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Abstract

Human-Robot Interaction (HRI) is a growing multidisciplinary field of science. The focus
of HRI is to study the interaction between robots and humans with a contribution of social
science, computer science, robotics, artificial intelligence, and many more.

Nowadays one of the research goals of HRI is to enable robots and humans to work from
shoulder to shoulder. In order to avoid misunderstandings or dangerous situations, choosing
the right input modality, especially for different levels of task complexity, is a crucial aspect
for successful cooperation. It can be assumed, that for specific levels of task complexity,
there is always one complementing input modality which increases the corresponding user
satisfaction and performance.

In order to identify the most appropriate input modality in relation to the level of task
complexity, two user studies are presented in this thesis, as well as the complete prototyping
process for the robot.

The first study was in a public space where participants could choose between two different
input modalities (a PC-remote control and a gesture-based interface) to drive a race with
a Lego Mindstorm robot against the other participant. The second study was conducted
within a controlled laboratory environment where participants had to solve three assembly
tasks, which differed in complexity. In order to get the required parts, they had to use three
different input modalities (the PC-remote and a gesture-based interface from the first study
plus a speech control interface). Besides investigating the correlation of task complexity and
input modality, it was explored in this second study, whether the appearance of the robot
also has an impact on how the collaboration is perceived by the user.

One of the main findings was that all of these factors (input modality, level of task complexity
as well as the appearance of the robot) had a severe impact on the results. In addition to
that, many interdependencies could be identified, especially between input modality and
task complexity. Differences in user satisfaction measures and also in performance were often
highly significant, especially for hard tasks. Furthermore, it was found, that the perceived
task complexity was strongly dependent on users’ cognitive workload, driven by the used
input modality, which also emphasized the strong coherency of task complexity and input
modality. Regarding the influence of the appearance of the robot, it could be shown, that
the human-like shape increased users’ self confidence, to be able to solve a task together with
the robot without any help of someone else.
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1. Outline

The goal of this work is to investigate whether there exists an interdependency between

input modalities and task complexities, and its effect on performance and user satisfaction

in human robot interaction (especially in a cooperative scenario). Therefore, three different

input modalities were implemented to control a robot prototype, which was realized by using

the Lego Mindstorms NXT 2.0 toolkit.

The input modalities used in the user studies were:

• A traditional PC-remote control using the keyboard for commanding the robot,

• a mobile gesture-based interface on an Android mobile which depends on the accelerom-

eter sensor of the mobile,

• and a speech control system using directly the voice of the user.

In order to evaluate the approach, two user studies were conducted involving behavioral and

attitudinal measures.

This thesis is structured as follows:

• In the first chapter a short overview about the history of robotics is given, followed by

the research objectives and research questions.

• The second chapter depicts the related work, especially regarding the state of the art

of input modalities in the field of HRI, as well as the motivation for the used input

modalities in this work.

• The third chapter explains the process and design of the robot prototype used for the

two user studies and, moreover, describes the planning and the implementation of the

three input modalities. Also some problems during the design process are described.
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• The fourth chapter is about the two user studies (one in a public context, and one in a

controlled laboratory setup) which were conducted in order to achieve the research goals

and to answer the research questions. Firstly, the study setup is described, followed by

the results of each study and a short summary of the most important findings.

• In the conclusion, the research questions are answered and discussed.

• The chapter about future work contains a short description about the prospective work,

which could be performed in order to deepen the understanding of the impact of task

complexity in HRI.

• In the appendix, three already accepted papers of this research, as well as all the

questionnaires used in the studies, and the outputfiles of the data analysis are provided.

4



2. Introduction

The history of robots is a long and diversified one. (cf. [YVR11], [Bed64]) Already in the

ancient world first experiments with machines were conducted. Around 420 B.C. Archytas

of Tarentum [Arc05], a Greek mathematician, for example, created a wooden steam pro-

pelled bird, which was able to fly and was storied to be the first known robot (depicted in

Figure 2.1).

Figure 2.1.: Archytas of Tarentum’s Dove (mobile.gruppionline.org)

Similarly, Heron of Alexandria [Her99] described more than a hundred machines, for example

automatic music machines or theaters in the first century A.D. and earlier.

With the downfall of the ancient cultures, scientific knowledge temporarily disappeared.

About 1205 Al-Jazari, an Arabic engineer, wrote a book about mechanical equipment, for ex-

ample humanoid automata or a programmable automaton band, which influenced Leonardo

da Vinci in his research. Da Vinci [Dav06] designed a humanoid robot in the 15th century,

but unfortunately, the technical knowledge was not sufficient enough to put such a machine

into practice. However, some drafts of his mechanical knight (Figure 2.2) outlasted the

centuries.

About 1740 Jacques de Vaucanson [Bed64] designed and implemented a machine, which could

play a flute, a first programmable fully automatic loom, and an automatic duck, which can

be seen in Figure 2.3 .
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Figure 2.2.: Model of a Robot based on Drawings by Leonardo da Vinci (From Wikimedia
Commons)

Figure 2.3.: Duck of Jacques de Vaucanson (From Wikimedia Commons)
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1941 Isaac Asimov [Asi42], a science fiction author, firstly used the word “robotics” in one

of his stories and assumed that robotics is referred to the science and technology of robots.

He also became famous for his “three laws of robotics” which he introduced in his story

“Runaround”.

1. “A robot may not injure a human being or, through inaction, allow a human being to

come to harm.

2. A robot must obey the orders given to it by human beings, except where such orders

would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict

with the First or Second Law.”

He also added a fourth one, the “zeroth law”

0. “A robot may not harm humanity, or, by inaction, allow humanity to come to harm.”

After the Second World War, most likely because of the invention of the transistor by Bell

Laboratories, robotics made rapid advances from the technological point of view.

According to Matarić [Mat07] who defined a robot as follows:

“A robot is an autonomous sysytem which exists in the physical world, can sense its environ-

ment, and can act on it to achieve some goals.”

the first real robot was considered to be the “Tortoise” of Grey Walter, because it was the

first machine which met the definition.

About 1970 the first autonomous mobile robot Shakey (Figure 2.4) was invented by the

Stanford Reseach Institute.

In 1973 at the Waseda-University Tokio [Kat74] the construction of the humanoid robot

Wabot 1 was started, and in the same year the German robotics pioneer KUKA built the

worldfirst industrial robot known as FAMULUS [KUK73].

1997 the first mobile robot Sojourner landed on the Mars [Soj97].

Nowadays, robots’ domains are manifold. On the one hand there are highly specialized robots

for industrial use. They often work in highly adapted environments, strictly separated from
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Figure 2.4.: The First Autonomous Mobile Robot (www.frc.ri.cmu.edu)

the humans’ workingspace. The main activities of industrial robots are often handcrafts like

assembly, painting, inspection or transportation tasks. However, on the other hand also in

this context, there is a trend to collaboration with human workers [Ana13]. As a consequence,

suiting methods for human-robot communication need to be provided, which is one of the

main research goals of this work.

Other application areas, for example, are service robots, which provide attendances often

directly to humans, and have to orient themselves in contexts together with human interaction

partners, which again shows the importance of ways to communicate with each other in order

to avoid misunderstandings or dangerous situations.

Furthermore, the toy industry has robots in their portfolio, for example the robotic dog Aibo

from Sony (Figure 2.5), or the Lego Mindstorms, which were used as prototype platforms for

the research in this thesis.

Looking like a game, but with a serious scientific background, robot soccer games between

teams, consist of the same type of robot, are conducted. The objective of this research is

to develop an autonomous humanoid soccer team, which is able to play and win against the

current world champion until 2050 [Cup13].
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Figure 2.5.: Sony’s Robotic Dog Aibo (From Wikimedia Commons)

Robots also help humans doing the housework, for example by mowing the lawn, or by

vacuum cleaning. Exploration robots investigate dangerous areas such as planets in a far

distance, as well as disaster areas. In medicine, robots support surgery or rehabilitation or

simple monitoring tasks in a hospital.

In the military context robots are used too, for example uncrewd drones for spying out

dangerous areas.

The fact that in the future robots will affect our living conditions a lot more than today,

stresses the importance of enabling a clear communication, without misunderstandings. Ad-

ditionally, also Hoffmann and Breazeal [HB04] propose, that collaboration between humans

and robots has and will become much more important. The research field of Human-Robot

Interaction (HRI) has dealt with such research questions for several years now, but there

are still many questions to answer. For example, one important aspect in the exploration

of human-robot cooperation is to find out which input modalities to communicate with the

robot are best suited [RBO09], [RDO11], [GS08] ; especially concerning different levels of

task complexity.

One severe problem of Human-Robot Collaboration is often, that not an appropriate input

modality is provided for the interaction with the robot. The challenge thereby is that the

ideal input modality can change between different situations or various tasks. For example,

in a noisy context, a speech control may not be the most suiting tool to interact with a robot,

whereas in a quiet surrounding where movement together with the robot is necessary, it could
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be the ideal choice. The ideal input modality is also dependant on the task which has to be

fulfilled, for example if the user needs a hand free for a secondary task, a PC-remote control,

where both hands are required for the interaction, would not be the optimal choice, whereas

a gesture-based interface which requires just one hand for the interaction, could probably

provide the functionality needed for such a situation.

In order to find the best input modality for collaboration, also the complexity level of the

task plays an important role. An easy and superficial task like transporting a box straight

ahead, could require other input possibilities, in comparision to a more complex task where

more precision is needed like a surgery for example. As a consequence, findings of task

complexity research were also included for the research in this thesis. This is essential in

order to find the best mix of input modality in dependance of task complexity for human-

robot collaboration.

2.1. Main Research Questions

Therefore, the main research goal of this thesis is to explore the ideal mix of input modalities

depending on different levels of task complexities in terms of performance and user satisfaction

measures. In other words, which input modality is the most appropriate for different levels

of complexities. For example, a speech control system could possible be the best choice for

easy tasks, whereas a gesture-based interface could be more appropriate for complex activities.

Furthermore, it is investigated if minimal human-like cues, added to a purely functional robot

in order to suggest anthropomorphism, have an effect on the interaction/collaboration.

2.2. Research Sub-Questions

1. What interdependencies between input modalities and task complexities can be iden-

tified?

2. How do users perceive the different input modalities in terms of user satisfaction mea-

sures?

3. Are the means of interaction provided by the different input modalities effective for the

human and the robot?
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4. Are the means of interaction provided by the different input modalities efficient for the

human and the robot?

5. How do the different input modalities perform for different task complexities?

The research sub-questions are used in order to assess the main research goal and to provide a

broader perspective about the research in this work. The research questions will be answered

in Chapter 6.

However, the first step to reach the research goal, was an intense search for literature, which

was used as a starting point for this thesis. The following chapter illustrates the most im-

portant work, which is related to this area of research.
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3. Related Work

In order to enable successful human-robot collaboration, many factors have to be consid-

ered:

• The context in which the interaction takes place,

• the type of the robot,

• the experience of the user,

• the task which has to be fulfilled,

• and many other circumstances.

Especially the chosen input modality used for the cooperation is an essential aspect to en-

hance a satisfying interaction as there are many different possiblities to interact with robots

nowadays. Much research effort has already been spent on investigating in different ways for

commanding robotic systems:

• Different handheld devices [RDO11],

• tangible interfaces [GS08] or

• or different control modalities at the same time [BGR+09].

Some researchers also investigate in using speech for commanding robotic systems [CSSW10]

[AN04]. All in all, each input modality has advantages and disadvantages in specific situa-

tions, therefore further investigation is necessary.

Cantrell et al. [CSSW10] for example worked on the issue of teaching natural language to an

artificial system. Therefore they conducted a human-human interaction experiment with the
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purpose to collect data about verbal utterances and disfluencies of natural language. They

mentioned, that most of the speech recognition systems are based on a sequential approach

and just make limited use of goal structures, context and task knowledge, which is indeed

essential for achieving a natural language like interaction. They identified a number of prob-

lems as disfluencies, omissions, grounding of referents and others which makes it complicated

for an artificial system to understand natural language. Although they believed, that “no

HRI architecture is currently capable of handling completely unrestricted natural language”

they proposed a very promising integrated architecture for robust spoken instruction under-

standing using incremental parsing, incremental semantic analysis, disfluency analysis, and

situated reference resolution besides the “classical” speech recognition, with the result, that

they were able to handle most of the above mentioned problems quite well. The authors con-

sider their work to be ”an important step in the direction of achieving natural human-robot

interactions”. All in all, their system can handle a wide variety of spoken utterances, but it

is still not free of errors.

Therefore, it was decided to use a sequential approach with strictly predefined commands

for the speech recognition system in the user study in this thesis, to avoid some of the above

mentioned problems, for example, the grounding of referents. Furthermore it is mentioned

that just a small set of commands will improve the accuracy of speech recognition systems,

which will totally meet the requirements for the studies in this thesis.

Ayres and colleagues [AN04] implemented a speech recognition system, which they studied

by using Lego Mindstorm robots. They implemented a system, which could control a robotic

device, with a JVM, via a Wifi/WLAN/TCPIP network from a PC workstation or a mobile

handheld PC (iPaq). They mention, that traditionally speech recognition systems are mainly

written in C, but due to recent advances in Java, especially in the Java Speech API, this

programming language would also be suitable for speech and recognition engineering. In

Figure 3.1 several implemented architectures are depicted. All of them have in common that

firstly the voice signal is aquired and processed by a PC Workstation or the mobile handheld

PC (iPaq), and secondly all of them are using different kinds of speech recognition systems

like Sphinx 2 or the JSAPI Cloudgarden API. The aquired and recognised speech signals are

sent to a Linux Server via WLAN then, which searches the grammar for possible commands

and redirects it again via WLAN to the robot.

The results were quite satisfying, and they’ve proved their hypothesis, that Java has become

a suiting tool for speech and recognition engineering, however, further implementation and

testing work is required. Furthermore, they also mentioned the possibility of using Bluetooth

for communication instead of WLAN, but due to the lower range and bandwith, and the

higher difficulty to program, as Java APIs were not readily available, they claimed, that
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Figure 3.1.: The Different Speech Recognition Architectures (cf. Ayres [AN04], S. 3)

WLAN “provides a more effective networking solution”.

However, for the studies in this thesis, the range and bandwith is not very important, therefore

it was decided to explore a similar speech recognition approach, combining the advantages of

Bluetooth with the plattform independent Java programming language.

Obviously, speech is just an excerpt of the huge amount of possibilites to interact with robots.

Other input modalities such as gesture or keyboards etc. have shown promising results,

too. Rouanet and colleagues [RBO09], for example, compared three different handheld input

devices, in order to control Sony’s Aibo robot and to show it different objects. For this, they

inspected a keyboard-like and a gesture-based interface on the iPhone, and furthermore a

tangible gesture-based interface using Nintendo’s Wii. The reason why they chose the AIBO

robots was that “Due to its zoomorphic and domestic aspect, non-expert users perceived

it as a pleasant and entertaining robot, so it allows really easy and natural interaction with

most users and keeps the study not too annoying for testers”. They conducted an experiment

with non-expert users in a domestic environment, where participants had to control the robot

through two tracks, which can be seen in Figure 3.2, which differed in complexity. The results

showed, that all input modalities were rather equally efficient and all considered as satisfying.

Especially the iPhone gesture-based interface was preferred by the users, whereas the Wiimote

was rather poorly rated, although especially for the hard course, the mean completion time

was slightly lower with it. According to the authors, this advantage could be explained by

the user’s ability to always focus on the robot. All in all, their input modalities suffered from

a little delay, which means that the reaction of the robot took a few milliseconds, until it

actually happened, after a command was given. Therefore, they added visual feedback in

14



Figure 3.2.: The Two Obstacle Courses, the Dotted Line is the Hard One, the Other Line
the Easy One (cf. Rouanet [RBO09], S. 5)

form of lights on the head of the robot, to add an abstraction layer to help users to enable a

comparison of the interfaces themselves, instead of their underlying system.

Rouanet et al. [RDO11] continued their research and applied a real world user study with the

aim, to teach robots new visual objects. Three input devices based on mediator objects with

different kinds of feedback (Wiimote, Laser Pointer, and iPhone) where used. Furthermore,

a gesture-based interface was simulated with a Wizard-of-Oz recognition system, to provide

a more natural way of interaction. The iPhone interface was based on a video stream of

the robot’s camera, which allowed participants to monitor the view of the robot directly.

However, it was mentioned that the splitting of direct and indirect monitoring of the robot

increased the user’s cognitive load. The Wiimote interface was based on the directional cross

to move the robot. The laser pointer interface worked with the light to draw the robot’s

attention directly in one direction. Both of the interfaces (Wiimote and Laser Pointer) allowed

participants to directly focus their attention on the robot. The gesture-based interface, using a

Wizard-of-Oz framework, provided the possibility to guide the robot by hand or arm gestures

(Figure 3.3). They designed their study as a robotic game, with the purpose to maintain

the users’ motivations. During their experiment, they found out that although the gesture-

based interface had a lower usability, it was more entertaining for the users. It also increased

the feeling of cooperation between the participants and the robot, whereas the usability was
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Figure 3.3.: Robot Guided by Gestures (cf. Rouanet [RDO11], S. 4)

better when using the iPhone interface, especially for non-expert users, which could possibly

be because of the visual feedback of the device.

All in all their work showed that although feedback increases usability, it could be negative for

the cognitive workload on the other hand. Due to the fact that the gesture-based interface,

which had the lowest usability was considered to be the most entertaining modality for

participants, which could offer a better overall user experience, further investigation in this

kind of input modality makes sense.

Cheng Guo et al. [GS08] suggested a tangible user interface for human-robot interaction

with Sony’s robotic dog AIBO. They used two input devices, namely a keypad interface and

a gesture based interface with a Nintendo Wii controller. They believed, that a more natural

way of interaction can be achieved by allowing users to focus their attention on more high

level task planning in comparison to low level steps. Therefore a suitable input device is

needed. They conducted a study, comparing the gesture-based interface and the keyboard

interaction device, solving two different tasks with two difficulties each:

• Navigation task: Participants were asked to navigate the AIBO robot through two

obstacle courses. For the easy task, participants could freely choose the combinations

of actions they needed. When solving the hard task, they were forced to use rotation

and strafing, in addition to walking and turning, for a successful completion of the

course.

• Posture task: Users had to perform a number of different postures with the forelegs

of the robot (cf. Figure 3.4). In this case, only one foreleg had to be manipulated,

whereas for the hard tasks, both forelegs had to be transformed, in order to complete

the transition.

One of their research questions was, if gesture-based input methods could provide a more

efficient human-robot interaction, in comparision to more conservative devices like keyboard,

mouse or joysticks. They mentioned, that the most important advantage of their suggested
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Figure 3.4.: Possible Postures for each Foreleg of the AIBO Robot (cf. Guo [GS08], S. 6)

tangible user interface was that it provided affordances of physical objects. This advantage

was explained because participants “do not need to focus on their hands while performing

a posture. They are naturally aware of the spatial location of their hands.” The results of

their user studies showed, that the gesture-based input outperformed the keyboard device in

terms of task completion times in both types of tasks, and that it was a more natural way

of interaction. The fact, that the keyboard interface required more attention shifts between

the robot and the device, is another argument for the Wii control. Although most of the

users mentioned, that they are more familiar with the keyboard - due to their computer game

experiences - they would prefer the gesture-based interface because of the higher intuitiveness.

On the other hand, it was mentioned, that if there had been a training session for both devices,

the keypad would have outperformed the gesture-based interface. Furthermore, the authors

argued, that their results are not always transferrable for these types of tasks, because they

did not use the most intuitive mapping of keys on the keyboard, as in Figure 3.5, which could

have effected their data.

Figure 3.5.: The Mapping of the Keys (cf. Guo [GS08], S. 6)

Thus, that participants believed, that a training session would have strengthened the results

of the keypad interface. Furthermore the statement that not the most intuitive mapping of

keys on the keyboard was used, and the fact that some kind of a tangible user interface (the

Wiimote) allowed users a more high-level task planning, leaded to investigate in that kind of

input modalities further in the studies.
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Bannat et al. [BGR+09] proposed that a more natural and flexible human-robot interaction

could be achieved by providing different control modalities at the same time, namely speech,

gaze and so-called soft buttons. So users can choose, which modality suits best in a specific

situation, for example to use speech when both hands are needed for an assembly step (Cf.

Figure 3.6). They conducted a study in a factory setup: The worker had to solve a hybrid

assembly scenario, in which the assembly steps should be solved in collaboration with the

robot serving as an assistant or also as a fully autonomous assembly unit. The aim of their

research is to “establish the so-called Cognitive Factory as the manufacturing concept for the

21st century.” Their approach will be evaluated in experiments with humans in their future

work.

Figure 3.6.: Three Independent Communication Channels Between Human and Robot (cf.
Bannat [BGR+09], S. 2)

However, this concept has not been experimentally validated so far and the possibility of

using more than one input modality at the same time could possibly lead to a higher cognitive

workload.

Hayes et al. [HHA10] tried to develop an optimized multi-touch interface for human-robot

interaction, using a map on a screen to control the robot. According to the researchers,

static input devices like mouse and keyboard do often not result in a satisfying interaction

form to command robots, especially in situations, where the user needs hands free for a

secondary task, or if it is necessary to walk around together with the robot. Their multi-

touch interface resulted in a better usability, faster completion times and in a lower overall

workload and reduced frustration, in comparision to static input devices like mouse and

keyboard. They believed, that their work was just a first step to developing a successful
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multi-touch interaction paradigm for human-robot interaction and they are willing to develop

additional touch capabilities. They argued, that it is essential to evaluate their interface with

participants, who are on the move during the interaction.

Their work leads again to take more flexible input devices like a gesture-based mobile interface

or a speech control system into account. To evaluate their usefulness, it is inevitable to

compare them to static input modalites, such as a PC-remote.

Another approach was investigated by Pollard and colleagues [PHRA02]. They evaluated the

possibility of using pre-recorded human motion and trajectory tracking as an input modality

for anthropomorphic robots. They used a system with several cameras to gather data about

the participants’ gestures, and conducted an experiment with professionally trained actors to

capture their motions, in order to transfer them to a Sarcos robot like in Figure 3.7. They

came to the conclusion, that the biggest limitation of their approach was that the degree of

freedom of each joint was inspected separately. This sometimes led to situations, where one

joint exceeded its limit and another did not, which produced results, that the motion of the

robot did not match the motion of the actor. They planned to make a second experiment,

where they want to show participants different instances of actors, performing given motions

and let the participants decide, whether the robot motion has been driven from the actors

motion or not. An evaluation will show, if the robots motions have been retained successfully

from the actors’ movement.

Figure 3.7.: The Sarcos Robot and a Professional Actor (cf. Pollard [PHRA02], S. 1)

On the one hand, the approach seemed to be very innovative and promising, on the other

hand, it seems to take a lot of time to record and process human motions, which is furthermore

a very complex activity. Therefore, this kind of interaction paradigm will not be used in the

studies.

Although there has been a lot of research done in human-robot collaboration and especially on

how to control robots, there are still many things to discover. Summarizing, many researchers

mentioned that speech is the most natural way of interaction between humans, therefore, it

could possibly be the most suiting control method for robots too. Several experiments on
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speech as an input modality for robots achieved quite positive results [AN04] [CSSW10]

[WBS+09] [BGR+09], but the studies and measures were often not very detailed or not

tested in a complete user study. Therefore further investigation makes sense, especially

in collaboration scenarios where increasing usability and user experience could provide an

immense outcome for companies in terms of time, money and overall satisfaction of the

workers. For the studies presented in this thesis, it is not needed to implement an interface,

which parses natural language, but just about five commands have to be understood, which

increases the robustness of such a system a lot. Understandably, there have to be comparative

input systems for the purpose to find arguments, whether a given input device is suitable for

different scenarios like superficial or more complex tasks. The other two input modalities,

which are investigated, are an Android application as a gesture-based interface and a PC

remote control. All in all three very different devices, that offer the possibility to find well-

founded arguments for comparing them, are investigated. Furthermore, it is a fact, that also

different appearances of robots could have an impact on the results, like in the work of Groom

et al. [GTON09]. As a consequence this factor will also be taken into account.

All in all, what has been - up to the literature review - left out so far, is a structured

investigation of the interplay between: (1) input modality, (2) task complexity, and (3)

appearance of the robot (functional vs. human-like). Which means that it is essential, not to

investigate these factors just separately but combined in stuctured user studies. Therefore,

especially interdependencies between them are in the focus of this research. The goal is to

find the most appropriate mixture of input device and appearance of robots for different levels

of task complexity, in terms of the resulting user satisfaction and the overall performance.

In order to assess these interdependencies in user studies, a robot prototype, as well as

various input modalities to study were needed. The design as well as the implementation of

the prototype and it’s input modalities are described in the following chapter.

20



4. Prototype

4.1. The Purely Functional Robot

For the research presented in this thesis a robot was needed, which is able to fulfill pick and

place and transportation tasks. These kind of jobs are often common in the context of a

factory for example and needed for collaborative interaction scenarios. It was decided to use

Lego Mindstorms NXT 2.0 [Wik13b], which were launched on August 5 2009, due to several

reasons.

The Lego Mindstorms were developed through a partnership between Lego and the MIT Me-

dia Laboratory, also with the goal, to be used, besides as a toy, as teaching material for pro-

gramming. It is a good example for an embedded system, which consists of a programmable

brick computer (with the possibility to use four sensors and three motors concurrently, with

a 32-bit microprocessor), three servomotors, different sensors (like an ultrasonic sensor to

measure distances, a light sensor to gather information about six different colours, or the

intensity of light, 2 touch sensors which react to button presses, a sound sensor which enables

the robot to receive information about noise, and many more), and Lego technique parts.

(cf. Figure 4.1) Furthermore, the robot is able to provide aural feedback by a 8-bit speaker

and also visual output with the aid of a 100x64 pixel display.

It is possible to copy nearly any thinkable mechanic system and also to construct autonomous

or interactive systems with Lego Mindstorms, which led 2008 to the acceptance for the robot

hall of fame [Wik13c]. In addition to that, it is a more or less affordable robot, also available

for the consumer market. Although it is primarily a toy, it provides the freedom to use nearly

any of the most common programming languages, for the purpose to write routines for the

robot. Summarizing, the flexibility, affordability, and quality has led to the decision to use

Lego Mindstorms for this research.

A first functional prototype was constructed, which was able to drive around by using two
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Figure 4.1.: The Programmable Brick Computer with Motors and Sensors Attached (cf.
Lego.com [Leg13])

motors. The problem appeared, that there was just one motor left to enable the robot to pick

and place things, which was essential for the user studies. As a consequence, an intensive

search for literature and ideas followed, with the discovery of “The Snatcher” of Laurens. It

is a functional robot with a grabbing arm, which was an inspiration for using this grabbing

arm for the prototype too. In his book [Val10], Lauren provides a detailed description how

to build this grabbing arm, with just one motor needed. This becomes possible by a clever

combination of gears, beams, and transmission of power. The arm worked well, but after a few

tests, strange noises were noticed, produced by the motor of the grabbing arm, when reaching

the highest or lowest position of the arm. This was caused by the attempt of the motor, to

overcome the resistance of physical barriers. In order to avoid damages to the motor, a

minimum and a maximum point were defined, to restrict the movement of the grabbing arm

motor. This was carried out by using the ultrasonic sensor and one touch sensor, to indicate

the respective end points (cf. Figure 4.2). For example, when the ultrasonic sensor reported

a distance lower than 1cm, the grabbing arm was on the lowest allowed position, and the

motor should stop. On the opposite side, the touch sensor was pressed, when the arm reached

the highest position and triggered the arm to stop.

Furthermore a sound sensor was added to the robot, to enable the robot to receive information

about noise and of course sound commands. Unfortunately, the sound sensor was only capable

of measuring the volume, and it was not managed to record actual sounds with it. The result

of the prototyping process led to a purely functional robot design, which can be seen in

Figure 4.3.

After a few short tests it was realised that the road grip was not adequate enough, as a

consequence it was hard to precisely control the robot. This problem led to the decision, to

change from wheels to chains which improved the handling a lot.
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Figure 4.2.: The Ultrasonic Sensor Indicates the Minimum Point, the Touch Sensor the Max-
imum Point

Figure 4.3.: The Functional Prototype with the Grabbing Arm
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4.2. The Anthropomorphic Robot

In order to get an insight into the impact of the appearance of the robot on the interaction,

it was investigated, if minimal anthropomorphic cues, added to the robot, would lead to

differences in the results. Therefore, the appearance of the robot was altered by adding a

head to the purely functional robot, to indicate anthropomorphism. The question was, if

minimalistic cues are sufficient to effect the results concerning user satisfaction measures, or

even the performance. The head was an outcome of a 3D-printing workshop, which took place

at the Computer Science Departement of the University of Salzburg and was provided by a

member of Otelo [Ote13]. In the workshop, which lasted two days, three fully working 3D

printers were built and tested and for the head of the robot a model, designed by Neophyte,

was used.1 The origin of the head can be seen in Figure 4.4.

Figure 4.4.: The 3D Printer is Processing the Robot’s Head

The head was then mounted on the functional prototype by using some lego bricks. In

Figure 4.5, a first concept and the prototype with anthropomorphic cues is depicted.

4.3. The Input Modalities

After the robot prototype was finished, three different input modalities were implemented.

All of them should have been able to control the robot to drive around in any desired direction,

and furthermore to lift and release small objects by using the grasping arm of the prototype.

1http://www.thingiverse.com/thing:8075
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Figure 4.5.: A first Concept and the Prototype with Anthropmorphic Cues

Following the literature review in Chapter 3, it was concluded to provide

• a gesture-based interface on an Android mobile phone,

• a speech control system,

• and, last but not least a “classical” PC-remote interface, using a standard keyboard

for the interaction with the robot.

In the following section, an overview about how the different input modalities were imple-

mented, and what and especially why some technologies were used, is given.

4.3.1. The Mobile Gesture-based Interface

During the conception of the different input possibilities, the MINDdroid application was

conquered, which offered nearly all of the functionalities, which were needed for the gesture-

based interface. The executable and also the source code is freely available under the GPL

v3 license 2. The source code can be downloaded at the github webpage [H1̈3].

The robot is controlled by using the data of the accelerometer sensor of the smartphone, in

other words, the direction of the robot is triggered by the relative angle of the mobile to the

2http://www.gnu.org/licenses/gpl-3.0.html
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ground. By using this data, it is possible to control two motors of Lego Mindstorm robots.

Furthermore, the application provides visual feedback on the screen and haptic feedback by

vibrations. The application also provides the possibility to start programs, which are directly

installed on the Lego Mindstorm using the standard firmware or others. This happens by

using the touchscreen interface via the action button. As it can be seen in Figure 4.6, the

relative position of the yellow square indicates the direction, which the robots is moving to.

If the yellow square is within the grey one, it stops. For the communication to the robot and

sending the commands, Bluetooth is used.

Figure 4.6.: The MINDdroid Application (cf. github.com [H1̈3])

In order to allow a more exact comparision between the different input modalities, the source

code was used and modified to meet specific requirements. The modification was covering a

limitation of the maximum speed in order to make it equal to the other input modalities -

the speech control interface and the PC-remote control. Performance measures would have

had hardly any value, if one input modality allows the robot to go faster or slower, than the

others.

Due to the fact, that a Samsung Galaxy S2 mobile phone was used for the studies, the

app was compiled for Android 4.1 Jelly Bean with API level 16 [And13], which was at

that time the newest version. For all the programming work, the integrated development

environment Eclipse 4.2.0 Juno [Ecl13] and the ADT plugin [ADT13] was used, which provides

an integrated environment for developers of Android applications within Eclipse.

At this stage, the robot was just able to drive around, therefore, the functionality for the

grasping arm was added. For this purpose two small routines were implemented, namely to

lift and release the grasping arm. For the routines, the programming language NXT-G, which

was provided by the NXT 2.0 standard base toolkit, was used. It features programming by

providing an graphical and interactive drag and drop environment, which can be seen in
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Figure 4.8. NXT-G is based on LabVIEW, an industrial programming standard, which was

created by National Instruments using data flow programming (cf. [Wik13b]). The programs

ran directly on the Mindstorm robot, and no change of the standard firmware was necessary,

which was indeed another argument for using the NXT-G language.

4.3.2. The Speech Control

Several reasons led to the conclusion, that further investigation in speech control was promis-

ing. According to the work of Hearst et al. [Hea11], users prefer to speak rather than type.

A good interface can bridge the gap in the back end, which makes systems more usable for

less experienced people. Additionally, such an input modality provides the advantage, that

it is possible to move along with the robot for a better supervision.

When it came to the implementation of speech control, the first idea was to implement

the system directly on the robot, in order to avoid the necessity of other equipment. The

flexibility of a directly embedded speech control seemed to be a high advantage, therefore,

the soundsensor was attached to the robot and programming with NXT-G was started. The

sound sensor in Figure 4.7 is, according to the manifacturer, able to detect noise levels in

decibels (frequency range from 3 to 6 khz), as well as to identify sound patterns and tone

differences (cf. Lego Shop [LSh13]).

The robot should “understand” 7 commands, turning in each direction, stop, and lift or release

the grasping arm. Following Alan Dix [DFAB98], humans are just able to remember 7+-2

chunks of information, due to the limited capacity of short term memory. As a consequence

it was decided to use the same number of commands for the robot, which was colloquial

sufficient to perform the required navigation and grasping tasks.

Firstly thresholds were defined. The noise values were divided from 1 (silent) to 100 (loud)

in order to strain off some of the background noise. Everything more quiet than a noise

value of 20 was identified as background noise, and therefore ignored. Noises between 20 and

59 were recognized as sound commands, and for security reasons, any sound louder than 60

triggered the stop command on the robot. This was implemented because in a noisy context

the robot could become probably uncontrollable and as a consequence the safest possibility

for the robot as well as for the user is to stop the robot automatically.

When the sensor detected a sound within the volume level of sound commands, the robot

recorded the sound for half a second, which means that for each millisecond the sound level
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Figure 4.7.: The Lego Mindstorms Sound Sensor (cf. [LSh13])

was stored. The outcome was a graph, where the x-value indicated the time and the y-

value the noise volume level. By analyzing the peaks of the graph, a differentiation of the

sound commands became possible pretty exact. After the result of the analysis of the sound

command the respective action on the robot was triggered. After the action was started, the

programm started again because of an infinite loop, the whole programm was included.

All in all, the speech recognition worked quite well, but unfortunately just for controlling

the robot forward, left, right, and to stop. When it came to adding more commands, which

were needed for the grasping arm, the accuracy of the speech recognition decreased a lot. A

small excerpt of the NXT-G program can be seen in Figure 4.8, just to get an idea of how

an NXT-G program looks like.

As a consequence it was decided to try an alternative approach, namely a program based

on Java on a laptop, which meant on the one hand giving up the advantage of a directly

embedded system on the robot, but on the other hand provided much more possibilities

in programming, and hopefully a higher accuracy and robustness of the speech recognition

system. A divison of the interaction between the user and the robot into necessary steps was

made from the speech control system’s point of view:

1. Aquire the spoken signal

2. Process and recognize the signal

3. Transform the recognized token into a command, the robot is able to handle

4. Send the command to the robot
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Figure 4.8.: An Excerpt of the First Speech Recognition Approach written in NXT-G

5. Start again with 1.

Step 1 was simply done by using the built-in microphone of a Lenovo Thinkpad R61 Note-

book, and the standard Windows microphone. The speech signal was then assigned to the

Java programm, where it was processed in Step 2 by a Speech recognition framework.

There are several open-source speech recognition engines available on the Internet, but it

was decided to use Sphinx [Sph13], which was released under the BSD style license by the

Carnegie Mellon University and others, and seemed to be very promising [WLK+04].

Sphinx is available in different versions:

• Sphinx 2 is a speaker-independent, real-time large vocabulary especially for mobile

applications based on the C programming language.

• Sphinx 3 is more accurate than Sphinx 2, but needs more ressources; also based on C.

• Sphinx 4 is a Java version of the toolkit, therefore, the first choice.

• Pocketsphinx, C-based recognizer library, especially suited for modern smartphones,

and newest Sphinx release.

• there are some more versions available which are not further discussed in this thesis.
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In 2004 Sphinx 4 was currently in development and suffered many compile errors and no doc-

umentation was provided. As a consequence Ayres et al. [AN04] failed to achieve satisfying

results. In the last years, Sphinx 4 has made huge advances, hence it was reasonable to use

it for the speech recognition system.

The speech recognition relies on a BNF-style grammar3 in the Java Speech API Grammar

Format (JSGF) [JSG13], a platform-independent grammar in textual form, expecially for

the use in speech recognition and engineering systems. In speech recognition systems, this

grammar needs to be specified, in order to determine, what the system should be capable

to understand, and of course to describe the utterances users may and should use. Due

to the fact, that 7 commands were necessary, a simple JSGF compatible grammar for the

commands “forward”, “backward”, “pause”, “lift”, “release”, “turn left” and “turn right”

was created:

#JSGF V1 . 0 ;

/∗∗
∗ JSGF Grammar f o r commanding the robot to move

∗ around and to l i f t and r e l e a s e o b j e c t s

∗/

grammar commandRobot ;

pub l i c <command> = ( Forward | Backward | Pause | L i f t | Release ) ;

pub l i c <turn> = ( turn ) ( l e f t | r i g h t ) ;

At the beginning an experimentation with a few possibilities for the words was done. Within

the grammar, example given “stop” instead of pause, or “go forward” instead of “forward”,

was defined, but it was concluded, that the accuracy of the speech recognition was best with

the words used in the end. The outcome of Step 2 was a string, which matched one of the

commands which were defined in the grammar.

This particular string was used to decide, which command should be triggered on the robot

in Step 3. To this end, the program applied the Icommand API v.0.7 [Ico13], which offers

the possibility of using Bluetooth for communication with the robot. For completing Step 4,

Icommand provides several possibilites for Bluetooth communication with Lego Mindstorms,

like RXTX, Bluez or Bluecove. The advantage of RXTX is, that it should be possible,

to simply adress the robot by the com port (e.g. COM4). Unfortunately the connection

3http://en.wikipedia.org/wiki/Backus-Naur Form
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sometimes got lost during the interaction due to unknown reasons. As a consequence, it was

switched to BlueCove [Blu13], a Java library which uses directly the Microsoft Bluetooth

stack, which worked out really well.

Summarizing, the system consisting of a notebook and the Lego Mindstorm robot, offered

the possiblity to control the robot by speech commands.

4.3.3. The PC-remote Control

The third input modality which was implemented, in order to compare them in a human-

robot collaboration task, was a “classical” PC-remote, using the keyboard on a notebook,

which was a coproduct of the speech control system and also written in Java. During the

development of the speech control, a key-listener was implemented for testing and debugging

reasons, which was also suitable for the PC-remote. The communication to the robot worked

in exactly the same way as in the speech control modality, in other words the Icommand

API v.0.7 [Ico13] for parsing the command understandable for the robot, and furthermore

Bluecove [Blu13] for the transmission of the command. The only differences were:

• Commands were not triggered by speech, but by button presses on the keyboard.

• Buttons needed to be kept pressed, in order to make the robot move. When the keys

were released, the robot stopped, unlike, by using the speech modality, it moved, until it

actually received the stop command. For this functionality the functions keyPressed()

and keyReleased() from the type keyevent were used:

pub l i c void keyPressed ( KeyEvent e )

{
i n t kc = e . getKeyCode ( ) ;

switch ( kc )

{
case java . awt . event . KeyEvent .VK UP:

command = COMMANDFORWARDS;

break ;

case java . awt . event . KeyEvent .VKDOWN:

command = COMMANDBACKWARDS;

break ;
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case java . awt . event . KeyEvent .VK LEFT:

command = COMMANDLEFT;

break ;

case java . awt . event . KeyEvent .VK RIGHT:

command = COMMAND RIGHT;

break ;

case java . awt . event . KeyEvent .VK G:

command = COMMANDGRAB;

break ;

case java . awt . event . KeyEvent .VK R:

command = COMMAND RELEASE;

break ;

d e f a u l t :

command = COMMANDNONE;

break ;

}
}

pub l i c void keyReleased ( KeyEvent e )

{
command = COMMANDNONE;

}

For directing the robot, the arrows on the keyboard were used, whereas for the grasping arm

the buttons G (“Grab”) and R (“Release”) were chosen.

This chapter explained the process and design of the robot prototype which is needed for

the two user studies and, moreover, described the planning and the implementation of the

three input modalities. Also some problems during the design process were described, such

as the capability of the sound sensor or the problem with the Bluetooth communication using

RXTX. In the following chapter, the two user studies (one in a public context, and one in

a controlled laboratory setup) which were conducted in order to achieve the research goals

and to answer the research questions are illustrated. At first, the study setup is described,

followed by the results of each study and a short summary of the most important findings.
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5. User Studies

To enable a better understanding of human-robot interaction/collaboration, especially about

interdependencies between:

• different input modalities,

• different task complexities,

• and different appearances of the robot prototype,

two user studies were conducted. The aim was to identify, which combination of input modal-

ity, and appearance of the robot works best in terms of performance and user satisfaction for

different human-robot collaboration tasks, which differ in complexity. This knowledge would

make it possible to define suggestions and guidelines in terms of suitable input modalities

for specific types of tasks and difficulty levels. During the two studies, users were invited to

solve different tasks together with the robot.

• At the beginning of June 2012 during the 50th anniversary of the Paris Lodron Uni-

versity of Salzburg, at the ICT&S Center, a preliminary study was conducted, were

participants were invited to compete against each other in a Lego Mindstorm race.

• Furthermore, in a controlled laboratory study, users had to perform a collaborative

task of building a house out of Lego bricks, together with the robot.

5.1. Preliminary Study in a Public Context

In order to explore how input modality, task difficulty, and the appearance of the robot

interplay in terms of performance and user satisfaction, a user study was set-up at the ICT&S

Center, during the 50th year anniversary of the Paris Lodron University of Salzburg.
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[Results of the preliminary study have already been published as a workshop position paper

[SWT12] and also a late-breaking report [SWT13b] was successful submitted and accepted.

The publications can be found in Appendix A.1 and Appendix A.2 ]

5.1.1. Methodology

For the purpose of exposing errors in the study setup and to refine the tasks, a pilot study was

arranged with volunteers from the ICT&S Center. Due to the fact that the pilot study was

quite successful, in other words, no severe flaws were identified in the study-setup, a study

was arranged, in which visitors competed against each other in a Lego Mindstorm race, which

was set-up as a 2x2 between-subject design.

The conditions were:

• Task difficulty (Easy / Hard)

• Used input modality (Gesture-based interface / PC-remote control)

Participants firstly had to sign an informed consent [which can be found in Appendix A.3] ,

in order to give their allowance to use the outcoming data for scientific purposes. After that,

they were provided with a short description of the input modalities and the task they had

to fulfill. The overall goal was to navigate their robot through a race track, which was filled

with obstacles, which the participants had to avoid. There were always two equal tracks in

parallel, one for each person. At the end of each track, a Lego box was placed, which had to

be transported to the starting point (cf. Figure 5.1).

One participant used the gesture-based interface, whereas the other one the PC-remote con-

trol, which offered the possibility to compare the two input devices in terms of efficiency and

effectiveness. The participant, who managed to transport the box with the help of the robot

first, was the winner of the race. In order to gather data about user satisfaction measures,

participants were asked to fill in a questionnaire after the race.

During the day the difficulty of the tracks was changed from easy to hard by adding more

obstacles to the track, in order to gain insights on the impact of different task complexities

(cf. Figure 5.2).
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Figure 5.1.: The Two Tracks with the Mindstorm Robots

Figure 5.2.: The Easy (left) and the Hard Track (right) was Different in the Number and
Placement of Obstacles

5.1.2. Measures

The measured information was driven from the EN ISO 9241-11 Standard [ISO99] which

defines three main measures for usability, also proposed by Jakob Nielsen [Nie01].

Based on a further literature review the measures were divided into two categories.
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5.1.2.1. Performance Measures (Behavioral Level)

In order to evaluate the potential of productivity with the different input modalities we

measured performance concerning two factors:

• Efficiency - time, participants needed to accomplish the course from starting to the end

point.

• Effectiveness - determined by counting the number of errors during the navigation

based on collisions with other objects or barricades.

5.1.2.2. User Satisfaction Measures (Attitudinal Level)

Besides performance also the attitudinal level is important to strenghten the results of the

studies. Therefore, several factors were assessed:

• The perceived task complexity, in order to check, if the manipulation of the track

difficulty was successful

• Acceptance, intuitiveness and satisfaction of the used device

The user satisfaction measures were captured by a questionnaire, which was inspired from a

survey which was used by a colleague [MBF+09] for the purpose to evaluate the intuitiveness

of the Nabaztag robot as an ambient interface. On the other hand, the USUS evaluation

framework [Wei10] was used as a source for the questionnaire, which consisted of 15 questions

with a 5-point Likert scale. Table 5.1 shows the item of the questionnaire concerning the

perceived task complexity. The participant had to check one of the boxes which ranged from

“not at all” to “very”; the last option “k.A.” meant no answer. Furthermore, participants

where asked why they decided their rating, indicated by the line under the checkboxes.

Table 5.1.: The Item “Perceived Task Complexity” with a 5-point Likert Scale
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The questionnaire consisted of:

• 1 item for perceived task complexity

• 5 items for intuitiveness

• 4 items for satisfaction

• And 5 items for the acceptance scale

Apart from the user satisfaction measures, the survey also contained information about de-

mographic data, like gender or age, and furthermore which device was used. The survey was

filled in within the study area to avoid the participants to be distracted from the change of the

context, which could possibly influence the results of the questionnaire. The full questionnaire

can be found in Appendix A.4.

Moreover, the study was videotaped, in order to recheck the measured time and number of

collisions as well as to identify observable problems with the input devices.

5.1.3. Results

Although it was a challenge to conduct a user study in such an open space context, because

of the frequent change of visitors, it offered - on the other hand - the opportunity of studying

lots of people with varying socio-demographic background in a short time.

All in all, there were 24 participants participating in the study. 10 of them were female, and

14 male. The youngest participant was 11 years old, whereas the oldest one was 66 years old.

The mean age was 36.73 yeas with a standard deviation of 14.63.

For the data analysis, 4 data sets were excluded because of two reasons:

• 2 participants passed the race without an opponent, with the consequence, that there

was no real race condition. This would likely have effected the results, therefore these

two participants were ignored for data analysis.

• Furthermore, a woman did not want to insult her son, therefore, she let him win the

race. The two data records were also removed because that situation would have

influenced the data as well.
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5.1.3.1. Performance Measures (Behavioral Level)

To begin with, it was checked, if the task complexity was successfully diversified by the

placement and number of obstacles, in other words, if the hard track was really more complex,

than the easy one. For this purpose, a Mann-Whitney-U test on the number of collisions

concerning the different task complexities was run. The test revealed, that the number of

collisions was significantly higher for the more complex track, z = 2.899, p = 0.004. The

mean rank for the hard task was 13.50, whereas for the easy one 6.00. Also the track solution

time was significantly different for the two tracks, z = 2.162, p = 0.031. The average rank

for the easy tasks was 7.00 and for the hard one 12.83. The absolute means concerning the

performance can be seen in Table 5.2

Table 5.2.: Efficiency and Effectiveness in Dependency of the Track Difficulty

Difficulty6of6Track

Easy Hard

Mean

Standard

Deviation Mean

Standard

Deviation

Number6of6Collisions 0.50 0.76 2.58 1.73

Track6Solution6Time6in

Seconds

54.50 15.22 81.75 27.75

Summarizing, the task completion time, as well as the number of collisions was higher for

the hard task, as a consequence the manipulation of the task difficulty could be considered

successful.

Regarding the two input modalities, the PC-remote and the gesture-based interface, the

PC-remote outperformed the gesture-based interface:

• The mean track solution time, which indicated the efficiency, was 68 seconds when

using the PC-remote and 73 seconds for the gesture-based interface.

• For effectiveness of the input modalities, the mean number of collisions was 2 for both

devices, but in absolute values the gesture-based interface caused 19 collisions, whereas

the PC-remote just raised 16 at all.
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5.1.3.2. User Satisfaction Measures (Attitudinal Level)

Regarding the user satisfaction measures, the scales for (1) intuitiveness, (2) satisfaction and

(3) the overall acceptance, gathered by the above explained questionnaire, were computed. In

order to evaluate the internal reliability of the questionnaire for these 3 factors, a Cronbach’s

Alpha test was conducted, on the three scales. Internal reliability means hereby, if all items

which measured intuitiveness for example, are related to each other.

The result of the Cronbach’s Alpha can be between -∞ and 1, but just positive values can be

meaningful interpreted. A common rule of the explanatory power can be seen in Table 5.3.

Table 5.3.: The Explanatory Power of the Cronbach’s Alpha Value cf. [Wik13a]

α Internal reliability
α >= 0.9 Excellent

0.8 <= α <= 0.9 Good
0.7 <= α <= 0.8 Acceptable
0.6 <= α <= 0.7 Questionable
0.5 <= α <= 0.6 Poor

α <= 0.5 Unacceptable

The scale intuitiveness, which consisted of 5 items in the questionnaire, scored a Cronbach’s

Alpha of 0.706 at first, which was acceptable according to the Table 5.3. In order to improve

the Alpha value, one item of the intuitiveness scale (“The used device was hard to use”) was

deleted, with the result, that the alpha value reached 0.733.

For the satisfaction scale, which consisted of 4 questions, the internal reliability score was

0.635. After removing one item (“I was satisfied with my own performance”), the score was

0.646.

Regarding the last of the user satisfaction scales, acceptance consisted of 5 items, reached a

value of 0.629. Also in this case, a deletion of an item brought an improvement to the score.

The item “I would not be able to solve a task with the robot, with this input device, without

help” was deleted, and as a consequence, the Cronbach’s Alpha of acceptance was 0.741.

After the computation of the user satisfaction scales intuitiveness, satisfaction, and accep-

tance was done, the descriptive data revealed a trend, that the user satisfaction measures

were strongly dependent on the task difficulty (cf. Table 5.4). When solving the hard course,
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the intuitiveness, satisfaction, and acceptance of the device was rated higher, although par-

ticipants suffered more collisions, and they needed significantly more time to finish the track.

At first, this seems paradox, but it also shows the strong coherency between input modalities

and task complexities. One possible explanation of this tendency could be the fact, that

people are more satisfied with a system, and also with themselves, when they succeed in

more challenging tasks.

Table 5.4.: User Satisfaction Scales Regarding the Track Difficulty. (Higher Values Indicate
Better Scales)

Difficulty6of6Track

Easy Hard

Mean

Standard

Deviation Mean

Standard

Deviation

Intuitiveness 4.43 0.72 4.73 0.23

Satisfaction 3.96 0.84 4.24 0.67

Acceptance 4.50 0.88 4.58 0.53

For all the three scales (intuitiveness, satisfaction and acceptance) a Mann-Whitney-U test

was conducted, also concerning for the used device (PC-remote and gesture-based interface),

in order to identify, if one was perceived more intuitively for example. Unfortunately, there

was no significance in the results. However, a trend was identified, that the PC-remote was

perceived on the one hand to be more satisfying and accepted, but on the other hand less

intuitive, in comparision to the gesture-based interface, which can be seen in Table 5.5.

Table 5.5.: The PC-remote Scored a Better Acceptance and Satisfaction, whereas the
Gesture-Based Interface was Considered to be More Intuitive. (Higher Values
Indicate Better Scales)

Used2Device

PC2Control Mobile2Control

Mean

Standard

Deviation Mean

Standard

Deviation

Intuitiveness 4.55 0.61 4.67 0.37

Satisfaction 4.28 0.56 3.97 0.88

Acceptance 4.72 0.34 4.38 0.87

Furthermore, the Mann-Whitney U test revealed interesting results for some of the single

scale items of the questionnaire. As already pointed out in Table 5.5, the gesture-based
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interface was rated to be more intuitive by the participants of the study. However, for one

item of the intuitiveness scale (“The used device was hard to use”) it was the opposite. The

PC-remote scored a higher score for this item. The result of the test was significant, z =

-2.195, p = 0.028. The mean rank for the PC-control was 12.55 and the average rank for the

gesture-based interface 7.17. A possible explanation would be, that using the gesture-based

interface requires all in all more movement, therefore, it was perceived to be harder to use,

than the PC-remote control. Anyway summarizing, the gesture-based interface reached a

higher intuitiveness score.

In addition to that, a correlation between the used input device and one item of the satisfac-

tion scale could be identified. The item “I was satisfied with my own performance” was rated

significantly higher for the PC-remote, which reached a mean rank of 13.20; whereas the

gesture-based interface just had an average rank of 7.80 (z = -2.160, p = 0.031). Obviously

the kind of the used input device had direct consequences on how satified participants were

with themselves. In that case they were more satisfied with the PC-remote in comparison to

the gesture-based interface.

The last significant difference revealed by a Mann-Whitney-U test, was for one item of the

satisfaction scale (“I would like to use the device often”) with regard to the task complexity,

z = 2.438, p = 0.015. The average rank for the hard track was 12.55 and for the easy one

6.50. This is another indication, that people are more satisfied when they manage to solve

more complex tasks.

5.1.4. Summary of the Preliminary Study

All in all the PC-remote outperformed the gesture-based interface, especially concerning the

performance measures efficiency and effectiveness, but the differences were much lower for

the easy task. Also the differences in task completion time and number of collisions were

statistically significant comparing the easy and the hard track. Which means, that in general

for the hard task, differences between the two input modalities were much higher, in terms

of user satisfaction measures as well as in performance results. On the other hand, the hard

track was not perceived much harder than the easy one, which implicates, that real and

perceived difficulty not always directly correlate.

It was also identified, that there is a strong relationship between the used input device and

the perceived task complexity [cf. Figure 5.3 ]. There was no statistical prove, but a trend

in the descriptive data supported this assumption. Participants who used the PC-remote
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control rated the easy track easier than people using the gesture-based interface. For the

hard course it was the opposite, which means, that the gesture-based interface users thought,

that the hard track was easier than for PC-remote users.

Figure 5.3.: Perceived Task Complexity in Relationship to the Difficulty of the Track and the
Used Input Device

One explanation for this effect could be the fact, that especially people using the PC-remote

suffered problems, when they controlled the robot back to the start. Some of the participants

mentioned, that it was very challenging driving the robot back to the starting point, because

they had to steer left, in order to let the robot go to the right, and vice versa. On the easy

track, there was not such a strong need in turning, therefore this effect had a higher impact

on the hard track.

Furthermore, there is another big advantage when using the gesture-based interface, five

participants profited from. During the race they stood up in order to move along with the

robot, which provided a better visibility of the race track. This behavior demonstrated the

advantage of such an input modality for that type of task.

Summarizing, it could be shown, that different task complexities, as well as various input

modalities have an impact on the performance and user satisfaction results. It is clear,

that the results cannot be generalized for all contexts, because a race situation for example

cannot be compared to a working context. Also the assumptions cannot be generalized for

all variations of gesture-based interfaces or PC-remote controls, but just for the ones used
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in the study, but it can be supposed, that for most variations of them, the results would be

similar.

The descriptive data, as well as the results of the reliability analysis and the nonparametric

tests can be found in Appendix A.5.

5.2. Controlled Laboratory Study

In order to strenghten the assumptions already made, and to further investigate the in-

terdependency of input modalities and task complexities, a follow-up study in a controlled

laboratory setting was conducted. The preliminary study was focused on solving a task as

fast as possible. Now an investigation in more complex tasks, which require a more exact

controlling of the robots was done. Within the laboratory environment in the experience

laboratory of the ICT&S center, the impact of different appearances of robots was inspected

too. In the study, participants had to solve predefined transportation tasks by assistance of

the robot with three different input modalities. They had to navigate the robot through a

course with obstacles - which was not varied this time - to get the required parts, needed for

assembling a Lego house.

[Results of the laboratory study have already been published successfully as a full paper

[SWT13a] for the 2013 IEEE International Symposium on Robot and Human Interactive

Communication (RO-MAN 2013). The publication can be found in Appendix A.11.]

5.2.1. Methodology

The start was again a pilot study with an employee of the ICT&S Center which was necessary

for detecting errors in the study setup. After refining the study-plan, a study was conducted

which was set-up as a 3x3x2 mixed experimental design with the three conditions:

1. Three different input modalities, namely speech and the two modalities already used

in the preliminary study (gesture-based interface, PC-remote control).

2. Three building tasks with different complexities (easy, medium, hard).

3. Two different appearances of the robot prototype (functional vs more human-like).
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The input modalities were tested within-subject in the study, which means that all partici-

pants worked with all the input modalities. In order to avoid carry over effects (e.g., learning

effects) [ER08], the sequence of the used input modalities was counterbalanced as shown in

Figure 5.4. In other words, one participant began with the speech control, followed by the

gesture-based interface and the PC-remote, another one started with the PC-remote follwed

by the speech control and the gesture-based interface and so on. Each participant used each

input modality once.

Gesture-Based PC -Remote Speech 
Speech Gesture-Based PC –Remote
PC –Remote Speech Gesture-Based
Gesture-Based Speech PC –Remote
Speech PC –Remote Gesture-Based
PC -Remote Gesture-Based Speech

Figure 5.4.: Possible Sequences of the Used Input Modalities

In order to take the different levels of task complexities into account, findings of task com-

plexity research were used, with regard to assembly tasks by Stork et al. [SSS08]. There they

found some criteria which effect task complexity, especially for Lego assembly tasks. In their

contribution “Optimizing Human-Machine Interaction in Manual Assembly” [SSS08], they

were engaged with a concept for human-machine interaction, using a foot-pedal-based inter-

face in a working environment. The main goal was to investigate “capabilities and bottlenecks

in human information processing” and “the user controlled timing of relevant information pre-

sentation”. Therefore an experimental study took place where they varied difficulty of manual

assembly tasks with a view to use respective processing resources of the participants. All in

all, the data was interpreted for the general optimization of human-machine interaction, and

to develop an “assistive system in production environments”. However, they pointed out,

that there are several important factors for assistive systems in manual assembly considering

the user’s state and task properties. Workers have to process visual information, store what

parts are needed, and to find, grasp and mount the parts.

They mentioned, that people are not able to process an unlimited amount of information or

perform large numbers of actions in parallel, therefore the tasks should be structured in a

way that they can be done in a more linear way. (One step is followed by one another). It

means that the robot should not disrupt the worker, therefore most activities of the robot

should be controlled by the user in cases of timing, to create a kind of turn taking interaction.

In their study they varied task complexity through:

• total amount of parts
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• amount of different parts

• object classes to be built (frame, gear, rotor, roof and group)

They found out that the amount of different parts seemed to have the weakest influence on

the results, whereas the object class had the highest impact. The most difficult one was the

class roof, whereas the easiest one was the class frame. Group tasks were considered to be

medium difficult.

According to these findings it was decided to let participants build a Lego house as in Fig-

ure 5.5 in the study, which could perfectly be divided into three subtasks which differed in

complexity.

• Construction Task 1 (Easy): The frame of the house which was the easiest class ac-

cording to [SSS08].

• Construction Task 2 (Medium): A group task, where participants had to add the

prebuilt door to the frame.

• Construction Task 3 (Hard): To finish the Lego house, the roof was added which was

the hardest type of assembly task follwing the results of Stork et al. [SSS08].

Figure 5.5.: Construction Task 1 to 3 and the Finished Lego house (From Left to the Right)

The factor task complexity was also studied as a within-subject design, because each partic-

ipant had to complete the Lego house, therefore all subtasks had to be fulfilled.

The last of the three conditions was the appearance of the robot, which was studied as a

between-subject design, which means, that the total number of participants was split between

the two different appearances, in that case the purely functional robot, and the robot with

the 3D printed head, to suggest anthropomorphism.
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Before the study, participants had to sign a consent form, in order to allow us to use the data

for scientific purpose. The data consent form can be found in Appendix A.6. After that, an

overview about this master’s thesis and the research topic was given. They were assured, that

the collected data will only be used for scientific purposes, and that they could not do anything

wrong during the study, because the system was studied, and not them. At the beginning,

the tasks and the input modalities were explained and shown to the users. Furthermore, they

got a guidance sheet, on which all the necessary commands for the PC-remote and the speech

control system were depicted, in case they forgot some of the commands. On Figure 5.6 the

guidance sheet for the speech command interface is depicted, for the PC-remote on Figure 5.7.

For the gesture-based interface, participants got no guidance sheet.

Lift 

SPEECHCOMMANDS 

Release 

Turn Left Turn Right 

Forward 

Backward 

PAUSE 

Figure 5.6.: Guidance Sheet for the Speech Command Interface

After that, participants had to navigate the robot through the track with one of the three

input modalities and transport a box, which contained the required parts for the assembly

tasks, from the end point of the track back to the start. The track can be seen in Figure 5.8

Shortly after getting the required parts, participants started with the first building task.

Then they filled in all the surveys, except the questionnaire concerning the appearance of the

robot, which only had to be filled in at the end of the study. The whole process was done

three times. This means, that participants navigated the robot three times through the track,

finished the Lego house, and filled in the surveys three times. At the very end they had to

fill in the questionnaire concerning the appearance of the robot, and were asked one question

about it, in order to investigate, if the appearance of the robot was suitable for these tasks.
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  G 

KEYBOARDCOMMANDS 

     R 

Arrowkey 

left 

Arrowkey 

right 

Arrowkey 

up 

Arrowkey 

down 

Figure 5.7.: Guidance Sheet for the PC-Remote Control

Figure 5.8.: The Track of the Laboratory Study

Moreover, the study was videotaped, in order to recheck the performance measures, and to

identify problems with the input modalities. The studyplan can be found in Appendix A.7,

but just in German, because the study was conducted in Austria.
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5.2.2. Measures

Similiar to the preliminary study, the measures were divided into the same two categories.

5.2.2.1. Performance Measures (Behavioral Level)

The performance measures were nearly the same as in the preliminary study, with the only

difference, that efficiency consisted of two variables, not only the time for navigating the robot

through the track was measured, but also the solution time for the building tasks. Effective-

ness remained the same, that means counting the numbers of collisions while controlling the

robot.

5.2.2.2. User Satisfaction Measures (Attitudinal Level)

The same questionnaires as in the preliminary study were used in order to assess:

• Perceived task complexity concerning the difficulty of the track, and additionally re-

garding the complexity of the building task.

• Intuitiveness, satisfaction and acceptance with the input modality.

In addition to that trust, people had in the different input modalities, was inspected, specifi-

cally for different task complexities. Maybe trust is higher for more “classical and traditional”

input modalities which are commonly known such as a PC-remote for example, compaired to

more innovative ones such as a gesture-based device or a speech control interface. In order

to assess trust, the guidelines of McKnight et al. [MCTC11] were used, who divided trust

into three subcategories and explained it as follows:

• Functionality: “refers to whether one expects a technology to have the capacity or

capability to complete a required task”

• Helpfulness: “excludes moral agency and volition (i.e., will) and refers to a feature of

the technology itself - the help function, i.e., is it adequate and responsive?”

• Reliability: “suggests one expects a technology to work consistently and predictably.”
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Due to the fact that the used input modalities did not provide any help function at all,

just questions about functionality and reliabilty were used in the studies. So the trust ques-

tionnaire which was used, consisted of seven items (4 regarding reliability and 3 concerning

functionality) with a five-point Likert scale, as for the other user satisfaction measures. The

complete questionnaire can be found in Appendix A.8.

Moreover, the cognitive workload of the participants after using each input modality was

assessed. It was also thinkable, that for one input modality, for example, the performance is

better than for another one, but on the other hand the cognitive load could be higher, which

could be at the expense of user satisfaction, for example. In the work of Hart [Har06] the

term workload is referred to as “the cost of accomplishing mission requirements for the human

operator.” In order to assess these costs or the cognitive workload, the Nasa-task load index

or shortly NASA-TLX was created. The NASA-TLX ”is a multi-dimensional scale designed

to obtain workload estimates from one or more operators while they are performing a task or

immediately afterwards.” It consists of six different subscales, which represent in combination

the “workload” which was experienced by the participants during a task:

• Mental demand: The level of cognitive activity required for the task.

• Physical demand: The level of physical activity required for the task.

• Temporal demand: The level of time pressure participants experienced during the task.

• Frustration: How stressed or insecure participants felt.

• Effort: How hard participants had to work to solve a task.

• Performance: How successful participants were.

The six subscales had to be rated between 1 which meant low, and 20 which indicated a high

value on the questionnaire (cf. Figure 5.9).

Mit Zeitdruck ist	die	Geschwindigkeit	gemeint,	in	der	die	Aufgabe	ausgefüllt	werden	musste
(langsam	oder	schnell,	ausreichend	Zeit	zum	Fertigwerden	oder	zuwenig	Zeit).
Der Zeitdruckwar:

Niedrig Hoch

Mit Zeitdruck ist	die	Geschwindigkeit	gemeint,	in	der	die	Aufgabe	ausgefüllt	werden	musste
(langsam	oder	schnell,	ausreichend	Zeit	zum	Fertigwerden	oder	zuwenig	Zeit).
Der Zeitdruckwar:

Niedrig Hoch

Figure 5.9.: The Item Temporal Demand of the German Version of the NASA-TLX

The NASA-TLX has often been used in several studies, and has also been translated to

various languages. Due to the fact, that the participants in the studies were all Austrian or
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German natives, the German version of the questionnaire was used. This was also used in the

doctoral thesis of Wölber [W1̈0]. Furthermore, the original NASA-TLX contains a weighing

scheme, in order to take into account the subjective preferences concerning the different

scales. One very common modification of the questionnaire is the NASA RAW TLX (NASA

RTLX) which is simplier to apply, because of the elimination of the whole weighing process.

Data analysis is done simply by averaging the ratings, in order to get an estimated workload.

According to the work of Hart [Har06] who investigated and compared many studies which

wheter or not applied the weighing scheme, the NASA RTLX was either found to be more

sensitive, less sensitive, or equally sensitive. As a consequence, it was decided to use just the

NASA RTLX in the studies, which can be found in the Appendix A.9.

As already stated, it can be assumed, that minimal human-like cues which are added to a

robot, could suggest anthropomorphism, and furthermore have an impact on performance and

user satisfaction. Possibly an anthropomorphic robot could result in a higher user satisfaction

due to the more human-like appearance, whereas a purely functional robot could provide a

better performance because of the lack of “unnecessary” parts which could distract users. To

get an insight into the impact of different appearances of robots, the German version of the

godspeed questionnaire concerning the anthropomorphism was applied. The questionnaire

was implemented by Bartneck et al. [BCK09] and tested in various studies, in order to create a

standartised measurement tool for researchers in the field of human-robot interaction. They

provided a set of standardised godspeed questionnaires for many key concepts of human-

robot interaction like perceived intelligence, animacy, perceived safety, anthropomorphism,

and likeability. The authors provide their series of questionnaires in various languages freely

available on the internet [Bar08].

The godspeed questionnaire series is based on semantic differential scales, and consists of five

items for the factor anthropomorphism. Semantic differential means that pairs of oppositional

words have to be rated, which can be seen in Figure 5.10.

The only survey, which the participants in the laboratory study had to fill in just once, at

the very end of each session, was the godspeed questionnaire concerning anthropomorphism.

The complete questionnaire can be found in Appendix A.10.

Furthermore, the study was videotaped, in order to recheck the measured time and number

of collisions as well as to identify problems with the input devices.
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1 2 3 4 5
Unecht

Natürlich

Wie	eine	Maschine Wie	ein	Mensch

Hat	kein
Bewusstsein

Hat	ein
Bewusstsein

Künstlich
Realistisch

Bewegt	sich	steif Bewegt	sich
flüssig

Figure 5.10.: The German Version of the Godspeed Questionnaire Concerning Anthropomor-
phism

5.2.3. Results

All in all, there were 24 participants participating in the study. 11 of them were female, and

13 male.

The youngest participant was 15 years old, whereas the oldest one was 61 years old. The

mean age was 29.46 yeas with a standard deviation of 12.19.

5.2.3.1. Performance Measures (Behavioral Level)

To begin with, it was checked, if the task complexity was successfully diversified by the

different building tasks, in other words if the frame task was the easiest one, the group task

medium, and the roof task the hardest one as intended.

For this purpose, a Kruskal-Wallis test on the time was conducted, participants needed to

solve the different building tasks, which revealead a highly significant difference in the dis-

tribution between the three building tasks (H(2) = 36.530, p = 0.000), with a mean rank of

58.26 for the hardest task (roof), 32.22 for the medium one (group), and 22.22 for the class

frame (easy).

As a consequence, it can be said, that the manipulation of the task complexity was successful.

The study design for the building tasks followed the work of Stork et al. [SSS08], where they

proposed, that roof tasks are the most complex Lego building tasks. This assumption could

be supported by the fact, that in the laboratory study, the building solution time, which can

be seen in Figure 5.11 was significantly higher than for the other tasks. Two participants did

51



not even manage it to finish the roof task at all and gave up.

Figure 5.11.: The Mean Building Solution Time in Seconds for the Three Different Building
Tasks Frame (Easy), Group (Medium) and Roof (Hard)

Furthermore, also the perceived building complexity matched the intended complexity for

the different tasks (H(2) = 9.188, p = 0.010) with a significant result. The mean rank for the

roof task was 30.88, for the medium group building task 36.78, and 46.34 for the frame class,

which was the easiest one. In this case, a low value indicates a higher perceived complexity.

Summarizing, the difficulty of the building tasks was varied and perceived as intended, and

the findings of Stork et al. [SSS08] concerning the three classes of building types used in this

study could be reproduced.

Regarding performance of the different input modalities speech, the gesture-based interface,

and the PC-remote control, the findings of the preliminary study could be reproduced too.

The PC-remote outperformed the other two input modalities in terms of track solution time

and also the number of collisions. The mean values can be seen in Figure 5.12. The speech

remote was the poorest input modality concerning the performance measures.

This fact was also supported by a Kruskal-Wallis test (H(2) = 49.853, p = 0.000), which

revealed highly significant differences in the distribution of the track solution time concerning

the used device. The average rank for the speech interface was 58.20, followed by 37.56 for

the gesture-based interface and 15.28 for the PC-remote control.
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Used0Device
PC0Control Gesture-based Speech

Mean
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

Track0Solution0Time
in0Seconds

55.20 9.10 79.96 19.19 145.65 61.58

Number0of0Collisions 0.16 0.37 0.24 0.72 2.10 1.29

Figure 5.12.: The Track Solution Time in Seconds as well as the Number of Collisions for the
Three Different Input Modalities Ppeech, the Gesture-Based Interface and the
PC-Remote Control

Also the differences in the distribution of the number of collisions was highly significant

(H(2) = 39.204, p = 0.000) with a mean rank of 56.08 for the speech control, 27.22 for the

gesture-based interface, and 27.32 for the PC-remote control.

5.2.3.2. User Satisfaction Measures (Attitudinal Level)

Regarding the user satisfaction measures, the scales were computed for:

1. intuitiveness, satisfaction, and acceptance

2. overall trust and its subcategories reliability and functionality

3. cognitive workload gathered by the NASA RTLX

4. and the level of anthropomorphism gathered by the godspeed questionnaire.

In order to again evaluate the internal reliability of the questionnaires for these factors, a

Cronbach’s Alpha test on all the scales was conducted.

The scale intuitiveness, which consisted of 5 items in the questionnaire, scored a Cronbach’s

Alpha of 0.792. This time a deletion of an item would have brought no improvement to the

score.

For the satisfaction scale, which consisted of 4 questions, the internal reliability score was

0.912 which was an excellent score for internal reliablity according to the Table 5.3.

Regarding the acceptance scale, which consisted of 5 items, a score of 0.639 was achieved.
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The complete trust scale with its 7 items resulted in a value of even 0.955 and its subcategory

reliabilty consisting of 4 items resulted in a score of 0.948. The subcategory functionality

with 3 items produced a Cronbach’s Alpha of 0.904, which was also an excellent result.

For the cognitive workload, which was gathered by the NASA RTLX the value was 0.733 and

for the appearance questionnaire 0.745 was calculated.

For all of these scales no deletion of items would have brought an improvement to the score,

therefore all items were used for computing the different scales.

In order to further investigate the impact of different task complexities, another Kruskal-

Wallis test on all the scales grouped by the different construction tasks was conducted.

Unfortunately, there was no significant difference in the results besides of the already men-

tioned performance measures. However, interesting significances were revealed for single scale

items.

For example, the distribution of the item “The used input device was fast to learn” was

significant (H(2) = 8.166, p = 0.017), with a mean rank of 32.90 for class roof, 33.66 for class

group, and 47.44 for the frame building task. Another significant difference could be found

for a second item of the intuitiveness scale “The used control device needs much to learn”

(H(2) = 6.594, p = 0.037) with the ranks 35.67 for class roof, 33.30 for class group, and 44.94

for the frame class, which was another indication for this assumption. These results could

be explained by the fact that participants perceived the used input modalities to be faster

and easier to learn, when they worked on an easier building task, which strongly shows the

relationship between input modalities and task complexity, although the two actions had to

be fulfilled independently within the study. In other words, participants had to control the

robot first, and solve the building task after that.

Furthermore, also the distribution of the physical demand, which was one item of the cognitive

workload scale was significant concerning the task complexity. The result of the NASA RTLX

(H(2) = 6.044, p = 0.49) scored an average rank of 37.72 for the roof building task, 45.38

for the medium task (group), and 30.90 for the easiest one, which was the frame class. In

addition to that, a second item of the cognitive workload scale - time pressure - was also

significant (H(2) = 5.993, p = 0.05) with an average rank of 43.02 for the roof, 41.46 for

group, and 29.52 for the frame of the Lego house. That means, the cognitive workload was

always lower when building the frame part of the Lego house.

Combined, all of these facts imply that the manipulation of the building complexity was

successful, and furthermore, that the findings of Stork et al. [SSS08]- which were used for
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the building tasks - could be reproduced.

In order to get an insight, which of the different input modalities (1) speech, (2) the gesture-

based interface, or (3) the PC-remote control scored the best values in user satisfaction

measures, a Kruskal-Wallis test grouped by the used device, was conducted. The test revealed

highly significant results for many of the user satisfaction scales used in the study.

At first, a Kruskal-Wallis test regarding the perceived control complexity revealed a highly

significant result (H(2) = 23.060, p = 0.000) with a mean rank of 47.52 for the PC-remote

control, 40.50 for the gesture-based interface, and 21.76 for the speech interface. In other

words, the PC-remote was considered to be easier to control, whereas the speech interface

was considered to be harder to use, in comparision with the other two input modalities.

As in performance measures, the PC-remote outperformed the other two input modalities

regarding the user satisfaction scales:

• The distribution of the scale intuitiveness which consisted of 5 questions (H(2) = 25.238,

p = 0.000) revealed a mean rank of 52.74 for the PC-remote control, followed by

38.76 for the gesture-based interface, and 22.50 for speech, which made the PC-remote

to be considered beeing the most intuitive device, which was a contradiction to the

preliminary study, where the gesture-based interface was rated to be the most intuitive

one. One possible explanation could be that for tasks which require speed the gesture-

based interface was considered to be more intuitive, but for tasks which require a more

exact control the PC-remote was perceived to be more intuitive. This again shows a

strong interdependency between input modality and the type of task.

• The PC-remote was also rated to be the most satisfying input modality with a highly

significant result (H(2) = 31.947, p = 0.000). 52.66 was the mean rank for the PC-

remote control, 42.44 for the gesture-based interface, and speech was again considered

to be the poorest device with an average rank of 18.90.

• Furthermore also the acceptance scale revealed a highly significant result (H(2) =

16.467, p = 0.000) with average ranks of 48.74 for the PC-remote, 40.64 for the gesture-

based interface and 24.62 for the speech control.

• Concerning trust, the result was similar (H(2) = 45.001, p = 0.000) with 55.08 for the

PC-remote, 43.78 for the gesture-based interface, and 15.14 for speech.

• The same was true for the subscales of trust reliability and functionality.
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– Reliabilty scale (H(2) = 47.850, p = 0.000); 55.90 for the PC-remote, 43.46 for

the gesture-based interface, and 14.64 for the speech control.

– Functionality scale (H(2) = 34.895, p = 0.000); 51.46 for the PC-remote, 44.66

for the gesture-based interface, and 17.88 for the speech control.

• Also the cognitive workload scale, where high values indicate a high workload offered

a highly significant result (H(2) = 17.924, p = 0.000) with a mean rank of 26.36 for

the PC-remote, 35.44 for the gesture-based interface and 52.10 for the speech control.

Summarizing, the PC-remote again outperformed the other two input modalites concerning

user satisfaction scales followed by the gesture-based interface. This assumption was also

supported by most of the single items. The complete data analysis results can be found in

Appendix A.12.

Concerning the appearance of the robot, it was investigated, if a small human-like feature

suggesting anthropomorphism - like the head used in the user study - could have an influence

on the overall interaction. Interestingly, even this small change of the appearance of the

functional robot influenced the results, although as expected, the robot was not considered

much more humanlike than the purely functional one. Many of the participants mentioned,

that the head had no functionality, and was therefore not necessary. Nevertheless, it’s even

the more astonishing that a Mann-Whitney U test showed, that for the single item “I would

not be able to solve a task with the robot without help” more participants tended to disagree

when using the robot with the 3D printed head (z = 2.054, p = 0.040), with an average

rank of 42.04 for the robot with the head, and 33.62 for the purely functional one. In other

words, participants who were in collaboration with the purely functional robot were less

self-confident in beeing able to solve assignments on their own. Thus, it can be assumed,

that even minimalistic human-like cues added to a robot, can increase participants’ positive

experience when collaborating with it. Three participants commented that the head made

the robot more appealing and funny and one participant who interacted with the purely

funtional prototype proposed to add eyes or similar cues to the robot in order to make it

easier to forgive errors. One participant even mentioned that the head was necessary in order

to identify the front and the back of the robot.

At the end of the study participants were asked, if they think, that the appearance of the

robot was adequate for such kind of tasks.

• Nearly all persons concluded that the appearance of the robot was absolutely suiting
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for such kind of tasks and compared the robot to a digger or a pallet transporter.

• They mentioned, that at first sight the mechanism to drive and also the grabber was

easily noticeable and as a consequence it was clear what can be done with the robot.

• On the other hand some participants thought that the head was not necessary and that

the appearance of the robot did not matter at all but just the functionality.

In addition to the comparision of the different input modalities and task complexities, some

differences concerning the gender of the participants could be identified. It was not the

primary focus of the studies to identify gender differences, therefore, just a small overview of

the most important results of the Mann-Whitney U test is given:

• The distribution of the single item “The used control device is easy comprehensible”

revealed a significant result (z = 2.448, p = 0.014) with an average rank of 43.79 for

female participants and 33.45 for male ones. In other words, women considered the

different input modalities to be easier comprehensible, in contrast to male participants.

• For the item “I would not be able to solve a task with the robot without help” (z =

-2.100, p = 0.036) men (average rank was 41.81) were more self-confident than women

(average rank was 33.15).

• For the cognitive workload, where high values indicated a high workload, the test also

revealed a significant result (z = 2.829, p = 0.005) with a mean rank of 46.03 for women

and 31.69 for men. Obviously the cognitive workload was higher for female participants

in this study.

• Also a difference in the perceived level of anthropomorphism was revealed (z = 2.212,

p = 0.027). Female persons with a mean rank of 16.64 significantly perceived the robot

in general to be more human-like than male persons, with an average rank of 10.14.

Due to the fact that the focus of this work was not on gender differences, these findings will

not be further discussed.

In order to get a deeper insight into the interdependencies between input modality and task

complexity, the results grouped by task complexity and input modality were further analyzed.

Many interdependencies could be identified within the results.
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Participants, especially after using the speech control system, which caused the highest men-

tal workload - according to the questionnaire - perceived the building tasks more complex,

although the building assignment was independent from the input modality. As already

stated in the study setup, people had always to control the robot first, in order to get the

required parts, and then to assembly them. In Figure 5.13, it can be seen, that especially

for the speech control system, the building complexity was perceived harder. In addition to

that, the difference in the perception for the easy and the medium building task (frame and

group) was lower than for the roof task, which was the most complex assembly task in the

study. It is obvious, that there is a strong inderdependency between the used input modality

and task complexity, which had a high impact on the results.

Figure 5.13.: The Buildings Tasks were Perceived More Complex, when the More Complex
Input Modalities were used Before (5 = Easy, 1 = Hard)

Also for the item “The control device was needlessly complex” the result was nearly the same,

for the frame assembly task, which was the easiest one, but differed much more for the classes

group and roof, which again emphasizes the strong relationship between the two factors input

modality and task complexity. In Figure 5.14, it can be seen, that for the easiest building

task (frame), there is nearly no difference concerning the item “the used control device was

needlessly complex” between the different input modalities, but for the harder tasks roof and

frame the difference is huge.

In general, it can be said, for all the used user satisfaction measures and also for the cognitive

workload results, that especially when the most complex input modality (in this case speech

control) and the more complex assembly tasks (group and roof class) converged, the user

satisfaction measures were rated much lower. One example regarding the intuitiveness scale
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Figure 5.14.: The Perceived Control Complexity in Dependency of the Different Assembly
Tasks (5 = Totally disagree, 1 = Totally agree)

can be seen in Figure 5.15. This trend could be identified for all of our user satisfaction

measures, as well as for the cognitive workload.

Figure 5.15.: The Intuitiveness Scale was Rated Much Lower when Complex Modality and
Complex Assembly Tasks Converged (5 = Very high, 1 = Very low).
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5.2.4. Summary of the Laboratory Study

Summarizing, similar to the preliminary study, the PC-remote again outperformed the other

two input modalities in terms of performance, as well as in the user satisfaction measures.

However, the differences for simple task were much lower than for hard tasks, matching again

the findings of the preliminary study.

The manipulation of the task complexity worked out perfectly, even for both the perceived as

well as for the real task complexity. The findings of Stork et al. [SSS08] could be reproduced.

The frame task was considered to be the easiest one, and the roof task to be the most difficult

assignment. Some participants even gave up building the roof of the Lego house.

The study also showed, that it is possible to enhance human-robot collaboration by just

adding minimal human-like cues to the robot. The head which was added in the second

user study, made participants significantly more self-confident in solving tasks on their own.

An effect, which should not be underestimated because if such minimal cues improve the

interaction in terms of user satisfaction, this is a simple way to improve the interaction as

such for functional robots.

All in all, it could be shown, that different task complexities, as well as various input modali-

ties have a severe impact on the results. It is clear, that the results cannot be generalized for

all variations of gesture-based interfaces, PC-remote controls or speech control systems, but

just for the ones used in the study. But again this trend should be similar for other variations

for these types of input modalities.

In general, the study showed that especially when the most complex input modality (in that

case speech control) and the more complex assembly tasks (group and roof class) converged,

the user satisfaction measures were rated much lower. This trend could be identified for all

of the user satisfaction measures, as well as for the cognitive workload. This points out the

need of a careful selection of input modalities, especially for hard tasks in order to avoid to

overburden users, and as a consequence handicap a performant and satisfying human-robot

collaboration. The descriptive data, as well as the results of the reliability analysis and the

nonparametric tests can be found in Appendix A.12.

This chapter dealt with the two user studies (one in a public context, and one in a controlled

laboratory setup) which were conducted in order to achieve the research goals and to an-

swer the research questions. In the following part, the research questions are answered an

discussed.
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6. Discussion

From the technical point of view, all the three input modalities which were implemented

to control the robot worked out sufficiently, so that naive users could perform all tasks

successfully. Similarly the Mindstorm prototype suited for the tasks in the user studies.

Therefore the prototyping and implementation phase can be considered to be quite successful,

although some problems appeared while implementing the different modalities. A detailed

description of the prototyping phase can be found in Chapter 4.

In most cases, when humans and robot work together shoulder to shoulder, there is only

one possibility to control a robot, but many different tasks to solve in collaboration. Due to

the strong interdependency of input modality and task complexity, which could be identified

in the studies, the design process for planning human-robot collaborative systems should

specifically include the tasks which have to be fulfilled.

In order to answer research sub-question 1 (What interdependencies between input modalities

and task complexities could be identified?) it could be seen, that it is not really important

which input modality is provided and used for simple tasks. The differences in user satis-

faction rankings and performance measures were small and not statistically significant. To

put it another way, users were always satisfied when solving easy tasks, and performed them

equally well, no matter which input modality they used. However, for hard assignments,

the differences in performance and user satisfaction were larger and need to be taken into

consideration because of their statistical significance.

Concerning research sub-question 2 (How do users perceive the different input modalities in

terms of user satisfaction measures?) it could be shown, that users perceived all the different

input modalities equally well, but just when solving easy tasks. For hard tasks the differences

in user satisfaction measures were statistically significant. The rating of the PC-remote was

best in both studies except in the preliminary study, where the gesture-based interface was

rated to be more intuitive. Nevertheless, the PC-remote outperformed the other two input

modalities followed by the gesture-based interface.
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Generally, the speech control interface was considered to be the poorest device in all categories

of the study, regarding research sub-question 2. One possible explanation for this fact could

be the latency, which participants had to take into account. Latency is often a problem

for speech control systems, which means that if a participant wanted to give a command

to the robot, it took a few milliseconds until the robot actually reacted. In other words,

if a participant wanted the robot to stop, it went a few centimeter further until it actually

stopped. According to some of the participants, this was a huge disadvantage of this kind of

modality, and made it very complex to control the robot. Furthermore, due to the used speech

recognition system [Sph13] and the corresponding dictionary, the commands for controlling

the robot were implemented in English, which was another problem for some participants,

who were all Austrians. One participant even rejected to try the speech control, because

of the lack of English language skills. These two facts had probably made a contribution

for the speech control system, to be the poorest device in this study. On the other hand,

the accuracy of the speech control was satisfying for most of the participants in the study,

and many of them mentioned after the test run that the disadvantage of the latency could

easily be compensated with a little experience using this kind of modality. Besides, they

suggested, that especially for very simple tasks, like going forward or backward, the speech

control system was absolutely suitable. In addition to that, the speech control was the only

input modality, which provided the possibility to use both hands for a secondary or even a

primary task while collaborating with the robot. Furthermore it was possible to move along

with the robot, which provided a better overview over the situation, and could especially be

useful in situations, where the robot could get out of sight. This is indeed a huge advantage

compared to more static input devices like the PC-remote, for example.

The third input modality, which is investigated in research sub-question 2 was the gesture-

based interface. It did not achieve the best values in terms of performance, nor in the user

satisfaction scales, but many of the participants mentioned that it was a pleasant experience

to use it, which can also be considered as an advantage of this modality. This fact could

provide a better long-term motivation and satisfaction for users, which possibly leads to a

higher internal motivation, what makes people more receptive to the information according

to Brown [Bro88]. As a consequence, the learning process for using such a kind of input

modality will be faster and with a higher output. Furthermore, also the advantage to be

on the move could be capitalised, but in contrary to the speech control system, the user

needs one hand for controlling the gesture-based interface. As a consequence just one hand

is available for other tasks, which is anyway one more than when using the PC-remote.

Research sub-questions 3 (Are the means of the interaction provided by the different input

modalities effective for the human and the robot?), 4 (Are the means of the interaction
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provided by the different input modalities efficient for the human and the robot?) and 5

(How do the different input modalities perform for different task complexities?) dealt with

the performance of the different input modalities. Again for easy tasks the difference was

minimal, but for challenging tasks the PC-remote performed best in terms of efficiency and

effectiveness. Probably because it was considered the most accurate, reliable, and familiar

input modality. In challenging situations users probably prefer to use control possibilites

which are familiar, compared to ones, which are more innovative or experimental. Concerning

performance, the speech control was the poorest device for hard tasks too.

Regarding one of the main questions if minimal human-like cues added to a purely functional

robot in order to suggest anthromorphism have an effect on the interaction/collaboration, it

can be said, that even with this small change of the functional robot by adding the 3D printed

head, a positive effect could be identified. For one item of the acceptance scale a significant

difference could be detected: People collaborating with an anthropomorphised robot with

head were more self-confident in solving tasks on their own than participants who interacted

with the purely functional one. If even this small human-like cue could evoke a positive effect

on the overall interaction, this offers many quick and often cheap possibilities to enhance

Human-Robot Collaboration.

Concerning the main research goal of finding the best mixture of input modalities and different

levels of task complexities in terms of performance and also user satisfaction measures, it can

be stated that for easy and simple tasks it does not matter which input modality is provided.

However, for challenging tasks it cannot be said, for example, that a PC-remote is always the

best choice. It depends on so many other factors and circumstances. Like already mentioned

one factor is if the user has to be on the move or can be static during the interaction with

the robot. Furthermore, does the user need one or two hands free for a secondary task during

the interaction? What is the type of task or the surrounding? A speech control system, for

example, is not really suitable in a very noisy context and a gesture-based interface possibly

useless in a workingplace with very little space.

All in all, the two user studies proved the assumption about interdependencies of input

modality and task complexity in Human-Robot Collaboration. Pros and cons of the different

input modalities were illustrated, especially concerning different complexities. Furthermore,

the outcome indicates, that none of these elements should be inspected separately. Only a

combined investigation of all of these factors, such as input modalities, task complexity and

appearance of the robot (and probably additional factors) allows well-founded implications

for Human-Robot interaction. This is a fact, any researcher who is working in this area

should be aware of. It is clear, that this work cannot be generalized to all variations of
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speech, gesture, and point-and-click input, only assumptions for the input modalities used

in this studies can be made. However, these studies are just a starting point for a series of

controlled experiments, to further decode this interdependency and propose adaptive multi-

modal Human-Robot Collaboration scenarios. Next steps are illustrated in the following

future work section.
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7. Future Work

Due to the fact, that in this work the interaction was only studied with naive users, the aim

- in a next step- is to investigate the possibility to reproduce the findings if participants had

a longer training phase and got used to all input modalities. Therefore, it is planned to give

participants the robot and the input modalities for usage and training in their private home

for one week, before conducting a controlled user study in the lab again.

It can be assumed, as an initial tendency was found in the user studies, that a humanoid design

of robots generates a more positive feeling in the user. Therefore, further investigation is

needed of how to produce minimal cues on the robot, to enhance the overall cooperation from

the user’s point of view. Moreover, a deeper insight into the impact of different appearances

is needed; The human-like cue has a positive effect on the interaction, although the robot

is not considered to be more human-like, therefore, a more human-like robot (e.g., the Nao

or the Darwin robot) should be compared to the functional Lego Mindstorm prototype.

Similarly, due to the fact that no subject worked with both types of robots, in a next study,

a within-subject approach for further investigation is considered.

In order to further investigate in the main research goal of finding the best mixture of input

modality, task complexity, and appearance of robot, the concept of an “intelligent” multi-

modal interface should be explored, where people can freely choose which input modality

they need in specific situations. In comparison to most typical multimodal interfaces, which

provide many different input modalities at the same time, is probably not the ideal solution

for successful human-robot collaboration. Users should be able to always concentrate on their

primary task and not think about which input possibility would be suiting for different kind

of tasks and complexities. In that case “intelligent“ means, that the interface reacts also

in accordance to the context and other circumstances like light, noise, and temperature and

provides a proper input modality and an according feedback modality (e.g., visual, haptic,

and auditive). The resulting combinations of input modality and feedback mechanism for

different task complexities should enable context-specific human-robot cooperation.
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Therefore, the overall goal is to further explore the most appropriate input modality for a

set of tasks, categorized according to their level of complexity. Additional to complexity,

other factors have to be taken into account, such as whether or not the robot is physically

collocated with the user, ambient noise, light conditions, and other factors, such as, if the

robot could get out of sight during the interaction or the user needs one or both hands free

for another task, like the necessity of carrying anything, for example. Moreover, it has to

be clear, if the user needs to have the possibility of mobility during the interaction. This

classification will enable the possibility to provide the ideal complementing input modality

for each type of task.

I strongly believe that a more adaptive and “intelligent“ multimodality is needed, which could

only be achieved if the tasks have been well classified before. This kind of multimodality

concerning input modalities could be the key to context-specific human-robot collaboration

and could enhance the relationship between human and robot itself.
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odontologie. dissertation, Albert-Ludwigs-Universität, 2010.

[WBS+09] A. Weiss, R. Bernhaupt, D. Schwaiger, M. Altmaninger, R. Buchner, and

M. Tscheligi. User experience evaluation with a wizard of oz approach: Tech-

nical and methodological considerations. In Humanoids 2009. 9th IEEE-RAS

International Conference on Humanoid Robots, pages 303 –308, dec 2009.

[Wei10] A. Weiss. Validation of an evaluation framework for human-robot interaction. the

impact of usability, social acceptance, user experience, and societal impact on col-

laboration with humanoid robots. Unpublished doctoral dissertation, University

of Salzburg, 2010.

73

http://spacepioneers.msu.edu/robot_rovers/sojourner.html
http://cmusphinx.sourceforge.net/


[Wik13a] Wikipedia. Cronbach’s alpha — Wikipedia, the free encyclopedia, 2013. [Online;

accessed 26-Mai-2013].

[Wik13b] Wikipedia. Lego mindstorms nxt 2.0 Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/wiki/Lego_Mindstorms_NXT_2.0, 2013. [Online; accessed

16-March-2013].

[Wik13c] Wikipedia. Robot hall of fame Wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/Robot_Hall_of_Fame, 2013. [Online; accessed 18-March-

2013].

[WLK+04] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gouvea, P. Wolf, and

J. Woelfel. Sphinx-4: a flexible open source framework for speech recognition.

Technical report, Mountain View, CA, USA, 2004.

[YVR11] D. R. Yates, C. Vaessen, and M. Roupret. From leonardo to da vinci: the history

of robot-assisted surgery in urology. BJU International, pages 1708–1713, 2011.

74

http://en.wikipedia.org/wiki/Lego_Mindstorms_NXT_2.0
http://en.wikipedia.org/wiki/Lego_Mindstorms_NXT_2.0
http://en.wikipedia.org/wiki/Robot_Hall_of_Fame
http://en.wikipedia.org/wiki/Robot_Hall_of_Fame


  

 

Abstract— In the research field of Human-Robot 
Collaboration choosing the right input modality and the 
according feedback modality are crucial aspects for successful 
cooperation for different levels of task complexity. In this 
position paper we present a preliminary study we conducted in 
order to investigate the correlations between input modalities, 
feedback and task complexity. We assume that specific input 
devices are suitable for specific levels of task complexity and 
that these input modalities differ in the ideal complementing 
feedback modality. Moreover, we assume that through the ideal 
mix, user satisfaction and overall experience of the human-
robot cooperation can be enhanced. We conducted a study in 
which participants could choose between two different input 
modalities to drive a race with a Lego Mindstorm robot against 
the other participant. One of the main findings was that all of 
these factors have a severe impact on the results but the effect 
of task complexities and input devices was more significant 
than the different feedback mechanisms which on the other 
hand strongly correlate with the used input device. Therefore 
none of these factors should be inspected separately. 
Furthermore, we found out that user’s perceptions of their 
performance in some cases differed from reality. 

 

I. INTRODUCTION 
Human-Robot-Collaboration becomes more and more 
important in different contexts, such as in modern homes or 
hospitals as assistive systems for example and in the factory 
context as assembly, painting, inspection or transportation 
robots. 

One important aspect in the exploration of human-robot 
cooperation is to find out which input modalities should be 
used for cooperation. Especially concerning different levels 
of task complexity and the according feedback, which needs 
to be provided. Therefore, we wanted to investigate the 
impact and correlation of input devices with different levels 
of task complexity and different feedback modalities. Based 
on literature review we built two robot Mindstorm robots, 
which can be controlled with two different input devices (a 
gesture-based input system on a mobile phone and a PC-
remote control interface) and studied these input modalities 
in a field trail with 24 participants.  

In the following paper we want to provide a short summary 
of related work, after that our research aim and the 
experimental setup is described followed by the results of the 
study which include a discussion part and finally a few 
sentences about future work are given.  

II. RELATED WORK 
One relevant aspect for successful human-robot cooperation 
is the input modality, which is used to control and interact 
with the robot. Clearly different input modalities suit better 
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with specific feedback modalities, e.g. if we talk to a robot 
we assume that the robot can talk back. Speech is still consi-
dered the most natural input modality for human-robot coop-
eration, but it is still a problem for robots to process spoken 
commands with high accuracy.  

In addition to that there are other input modalities to interact 
with robots than speech such as gesture, keyboards etc. 
Rouanet and colleagues for example compared a keyboard-
like and a gesture-based interface to communicate and 
control the system driving through two courses which 
differed in complexity and results showed that different task 
complexities have a significant impact on the user 
performance. [1] 

Further studies with a Wiimote, Laser pointer, Iphone and a 
simulated gesture-based interface were compared as input 
modalities in HRI, which also showed the importance of 
according feedback modalities. [2] 

Bannat et al. proposed that a more natural and flexible 
human-robot interaction can be achieved by providing 
different control modalities at the same time namely speech, 
gaze and so-called soft buttons and that users can choose 
which modality suits best in a specific situation. However, 
this concept is not experimentally validated so far. [3] 

Another interesting approach are multi-touch interfaces for 
commanding robots. According to Hayes et al. it is not 
satisfying commanding robots with static input devices, such 
as a mouse or a keyboard, above all in situations where the 
user is on the move or needs the hands free for a secondary or 
even for the primary task. They could show that multi-touch 
interfaces provide a good usability and a lower overall 
workload for users controlling the robot. [4] 

Furthermore, experiments with a tangible user interface for 
human-robot interaction with Sony's AIBO had been done 
using also a keypad and a gesture-based interface. The 
researchers believed that a more natural way of interaction 
could be achieved if users can focus their attention on a 
more high-level task planning in comparison to low-level 
steps. Their tangible user interface outperformed the 
keyboard interface, but they mentioned that this could 
possibly be because they did not use the most intuitive 
mapping of keys on the keyboard. [5] 
 
Another approach was investigated where pre-recorded 
human motion and trajectory tracking as an input modality 
was used for anthropomorphic robots with the aim to 
compare motions of the participants and the robots. They 
mentioned that their results were limited because they only 
measured the degree of freedom of each joints separately 
therefore they have to conduct a second study. The process of 
recording human motions seems to be very complex and time 
consuming therefore this possibility will be ignored for our 
research.  [6] 

The effect of input modalities and different levels of task complexity 
on feedback perception in a human-robot collaboration task. 
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To summarize, a lot of research has already been done to 
compare input modalities for Human-Robot collaboration in 
order to identify their advantages and disadvantages in terms 
of performance and user experience/ usability. In some cases 
the input modalities were compared according to their task-
suitability and their impact on feedback modalities. However, 
what is up to our knowledge missing so far is a structured 
investigation of the interplay between: (1) input modality, (2) 
task complexity, and (3) feedback modality. In order to 
investigate this interplay we conducted a preliminary small 
user study in which we compared two input modalities 
(gesture and keyboard) with two different levels of task 
complexity [Figure 1] with the according feedback 
modalities. 
 

 

 

 

 

 

 

 

 

III. RESEARCH AIM 
The overall aim of investigating the combination of input 
modality with task complexity and feedback modality is to 
identify which combination works best for different human-
robot collaboration tasks. The outcome should be 
recommendations for specific task types (and difficulty 
levels) in terms of suitable input and output modalities. We 
expect that the input modality will have the highest impact on 
the overall user performance in a collaborative task, however 
the task difficulty and the feedback will also effect the 
results. Moreover, we consider that the feedback modality 
will influence aspects, such as user satisfaction and system 
trust more than the input modality.  
 
For our first study we built two identical robots driven by 
“The Snatcher” from Laurens. [7] [Figure 2], which could be 
controlled by (1) a gesture-based interface and (2) a PC-
remote control. [Figure 3] Both robots were constructed in 
the same way and both provided aural feedback driven by the 
sounds of the motors and optical feedback from the robot’s 
movement. The feedback of the different input modalities 
was haptic feedback from the keyboard of the PC-remote 
control and visual and haptic feedback from the mobile 
phone, which was used for the gesture-based interface.  
 
We assumed that the PC-remote control will achieve the best 
results in terms of performance (efficiency and effectiveness), 
but that the gesture-based interface will strengthen the feeling 
of collaborating with the robot and will be perceived as more 
intuitive. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

IV. EXPERIMENTAL SETUP 
In order to explore how input modality, task difficulty, and 
feedback modality interplay in terms of performance and user 
satisfaction we set-up a study at an open-house university 
event, in which visitors were invited to compete each other in 
a Lego  Mindstorm race.  

The experiment was set-up as a 2x2 between-subject 
experiment with the conditions task difficulty (easy/ hard) 
and input device (gesture-based/ PC-remote) 

After a short description of the input devices and the task 
they had to fulfill they had to navigate their robot through 
two equal courses and avoid some obstacles with the aim to 
lift and transport a box to a given goal. One of the 
participants always used the PC remote the other one the 
gesture based interface which offers the possibility to 
compare the two input devices and the according feedback in 
terms of efficiency and effectiveness. After the race they were 
asked to fill in a short questionnaire to gather further data. 
During the day we changed the difficulty of the tracks from 
easy to hard by adding more obstacles to gain insights on the 
impact of the different task complexity.  

Although the open space context was not easy to control 
because of the frequent change of visitors, it provided the 
advantage of studying many participants with different socio-
demographic background in a short time. 

 

 
Figure 2: The Lego Mindstorm robot. 

 
Figure 3: The gesture-based interface with the action 
button to lift the grabber and on the right the PC-remote 
with the assignment of keys for each action. 
 
 
 
 
 
 

 

Figure 1: Track with hard difficulty (contains 
more barricades than the easy track) 



  

MEASURES: 
Based on a literature review we decided to divide our 
measures into two categories.  
 
Performance Measures:  

• Efficiency: The time users needed to accomplish the 
course from starting to the end point.  

• Effectiveness: The number of errors during the 
navigation based on collisions with other objects or 
barricades. 

• Perceived task complexity, intuitiveness, satisfaction 
and acceptance of the device: A questionnaire was used to 
gather information about these measures. It consisted of a 5-
point Likert scale and 15 questions, which were driven from 
the USUS evaluation framework 

User Satisfaction Measures: 

[8] and from a survey used 
to assess the intuitiveness of the Nabaztag Robot as an 
ambient interface. [9]  

Moreover, the whole study was videotaped to recheck the 
measured time and number of collisions as well as to identify 
problems with the input devices and the according feedback 
channel. 

V. RESULTS 
We conducted the study with 24 participants, 10 female and 
14 male, age from 11 to 66 years, the average age was 36,73 
years and the standard deviation was 14,63. For further 
analysis four data records were removed because some 
participants solved the track without an opponent, in that case 
there was no race condition therefore we didn’t use the data. 
Furthermore one woman let her son win in order to raise his 
mood which would have influenced the data as a 
consequence this data record was also removed. 

At first we conducted a manipulation check if the task 
complexity was successfully varied. Therefore, we ran a 
Mann-Whitney-U Test on the track solution time and number 
of collisions to check if they significantly differ for the 
assumed track difficulty. The track solution time differs for 
the track difficulty. The results of the test were in the 
expected direction and significant, z=2,162, p<.05. The mean 
rank for easy track was 7.00 while the average rank for hard 
one was 12.83. 

As expected also the number of collisions was higher for the 
hard track, z=2,899, p<.05. The mean rank for easy track was 
6.00 while the average rank for hard one was 13.50.  

After that we computed the scales for the items intuitiveness, 
satisfaction and the overall acceptance of the questionnaire. 
Therefore we ran a Cronbach’s Alpha test to check the 
internal reliability for these 3 factors. 

For the intuitiveness scale which consists of 5 questions we 
reached a Cronbach’s Alpha of .706, after deleting the item 
“the used device was hard to use” the Cronbach’s Alpha was 
.733. 

The Alpha value for satisfaction with 4 questions was .635 
and after deleting “I was satisfied with my own performance” 
.646. 

For acceptance with 5 questions the value was .629 and 
without “I would not be able to solve a task with the robot 
with this input device without help” even .741.  

Regarding performance the gesture-based interface enabled a 
less efficient control because the mean track solution time 
was 73 seconds and for the PC-remote 68 seconds. 
Concerning effectiveness the absolute number of collisions 
was 19 for the gesture-based interface and 16 for the PC-
remote but the mean number of collisions was 2 for both 
devices. 

Regarding the three scales intuitiveness, satisfaction and 
acceptance there was a trend that all of them were perceived 
better when solving the hard track and experienced worse 
practicing on the easy one even for both devices. [Figure 4] 

 
 

 

 

 

 

 

 

Regarding intuitiveness the gesture-based interface was 
considered more intuitive but for terms of satisfaction and 
acceptance the PC-remote was perceived better. [Figure 5] 

 

 

 
 

 

 

 

 

We conducted Mann-Whitney U tests for the three scales 
(intuitiveness, satisfaction, and overall acceptance) for the 
types of device and the task difficulty, but unfortunately there 
was no significance in the results. However, interesting 
results could be found for single scale items. 

A Mann-Whitney U test revealed that one of the two input 
devices was less intuitive to use, which was in that case the 
gesture-based interface but only for one item in the 
intuitiveness scale (“the used device was hard to use”) the 
results of the test were in the expected direction and 
significant, z=-2,195, p<.05. The mean rank for the mobile 
control was 7.17 while the average rank for the pc control 
was 12.55. 

Furthermore, the used input device correlates with the own 
satisfaction of the performance of the participants. The results 
were also significant, z=-2,160, p<.05. The mean rank for 

 
Difficulty of Track 

Easy Hard 

Mean Std Dev Mean Std Dev 

Intuitiveness 4,43 ,72 4,73 ,23 

Satisfaction 3,96 ,84 4,24 ,67 

Acceptance 4,50 ,88 4,58 ,53 
Figure 4: The three scales grouped by track difficulty 

 

 
Used Device 

PC-Remote  Gesture-Based 

Mean Std Dev Mean Std Dev 

Intuitiveness 4,55 ,61 4,67 ,37 

Satisfaction 4,28 ,56 3,97 ,88 

Acceptance 4,72 ,34 4,38 ,87 
Figure 5: The three scales grouped by used device 

 



  

satisfaction with the gesture-based interface was 7.80 while 
the average rank for the PC-remote was 13.20. 

Another interesting result was a significant difference in 
terms of user satisfaction for one item on likability (I would 
like to use the device for often) according to the task 
difficulty (z=2,438, p<.05). The mean rank for the easy track 
was 6.50 while the average rank for hard one was 12.55. 

VI. DISCUSSION 
Although the PC-remote outperformed the gesture-based 
interface in terms of efficiency and effectiveness the 
difference concerning efficiency was much lower for the hard 
course. Apart from that the difference in task completion 
times and number of collisions was huge comparing easy and 
hard track, but not that much for the perceived task 
complexity. This means that real task complexity and 
perceived complexity do not always correlate directly. 

Apart from that the perceived task complexity was also 
dependent on the used input device, which could not be 
proved statistically but in the descriptive data there is a trend 
showing this fact. People who used the PC-remote thought 
that the easy course was more easy than participants who 
used the gesture-based interface, but for the hard course it 
was the opposite which means that gesture-based interface 
users perceived the hard track more easy than participants 
who used the PC-remote. [Figure 6] One possible reason for 
that phenomenon could be the visual feedback provided by 
the gesture-based interface, which was used a lot by the 
participants and  especially people using the PC-remote had 
problems when they steered the robot back to the starting 
point of the track because of the fact that they had to steer left 
when they wanted to turn the robot to the right. Adding visual 
feedback to the PC-remote could minimize the effect for this 
device.  

 

 

 

 

 

 

 

 

 

Moreover 5 participants using the gesture-based interface 
stood up during the race and moved with the robot, which 
demonstrates the advantage of such an input modality for this 
type of task, but also demonstrates the lack of interface-
specific feedback which has to be enhanced by context-
feedback (“user workaround”).  

Although the PC-remote was much better in terms of 
efficiency and effectiveness the differences in intuitiveness, 
satisfaction and acceptance were not significant, possibly also 
because of the fact that the gesture-based interface provided 
more feedback to the participants. 

All in all different input devices as well as task complexities 
have a severe impact on the results. Also the effect of 
feedback must not be underestimated. Every input device 
needs specific feedback depending on the device, task 
complexity and different situations.   

VII. FUTURE WORK 
In a next step we want to investigate speech input. We plan 
to conduct a more controlled experiment in a closed 
laboratory setting adding speech as an input modality for 
comparison and furthermore different embodiments 
(functional vs. anthropomorphic) of the robots, which could 
have an impact on the findings too. It is planned to let a 
higher number of participants solve given assembly tasks 
(which will differ in complexity) together with a Lego 
Mindstorm robot which helps in principle the users to 
transport Lego parts from A to B to get further insight of the 
correlation of input methods, task complexities and feedback 
modalities as well as the appearance of the robot. Finally this 
basic research study should inform the interaction design for 
a robotic arm in the context of a factory in which operators 
have to cooperate also with robots in transportation tasks as 
simulated in our preliminary study. 
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Abstract— In the research field of Human-Robot Collaboration 
(HRC) choosing the right input modality is a crucial aspect for 
successful cooperation, especially for different levels of task 
complexity. In this paper we present a preliminary study we 
conducted in order to investigate the correlation between input 
modalities and task complexity. We assume that specific input 
devices are suitable for specific levels of task complexity in HRC 
tasks. In our study participants could choose between two 
different input modalities to perform a race with Lego 
Mindstorm robots against each other. One of the main findings 
was that both factors (input modality / task complexity) have a 
severe impact on task performance and user satisfaction. 
Furthermore, we found out that users’ perceptions of their 
performance differed from reality in some cases. 

Index Terms—Human-Robot collaboration; input modalities; 
task complexity; gesture; speech; remote; mindstorm 

I. INTRODUCTION AND MOTIVATION 
In order to investigate which input modalities should be 

used for cooperative tasks, especially for different levels of task 
complexity, we built a Lego Mindstorm robot, which can be 
controlled by two different input devices: gesture-based 
interface on a mobile phone and a PC-remote control. These 
input modalities were studied in a field trial with 24 
participants. 

Different input modalities suit better for different task 
complexities. E.g. for simple tasks there is no strong need in a 
very precise and robust control mechanism. There are many 
different input modalities to interact with robots, such as 
speech, gesture, keyboards, etc. which were tested in several 
studies. Research has shown that different task complexities 
have a significant impact on the user performance [1]. 
Furthermore, a more natural and flexible human-robot 
interaction can be achieved by providing different control 
modalities at the same time [2]. 

A lot of research has already been done to compare input 
modalities for HRC in order to identify their advantages in 
terms of performance and user experience/usability. In some 
cases also according to their task-suitability [1],[4]. However, 
what hasn’t been explored so far is a structured investigation of 
the interplay between: (1) input modality, and (2) task 
complexity. In order to investigate this interplay, we conducted 
a preliminary user study in which we compared two input 
modalities (gesture-based, PC-remote) with two levels of task 
complexity. 

The overall aim of this investigation is to identify which 
combination works best for different HRC tasks. The outcome 

should be recommendations for specific task types (and 
difficulty levels) in terms of suitable input modalities for 
robots. For a first investigation of this assumption we built two 
identical robots driven by “The Snatcher” of Laurens [3], 
which were controlled by (1) a gesture-based interface and (2) 
a PC-remote control. 

II. EXPERIMENTAL SETUP 
Our aim was to find out how input modality and task 

difficulty interplay in terms of performance and user 
satisfaction. We set-up a study at an open-house university 
event, in which visitors were invited to compete in a Lego 
Mindstorm race. The experiment was set-up as a 2x2 between-
subject experiment with the conditions task difficulty 
(easy/hard) and input device (gesture-based/ PC-remote). 

After a short description of the input devices and the task, 
they had to navigate their robot through two equal courses and 
avoid obstacles. The aim was to lift and transport a box to a 
given goal. After the race the participants had to fill in a 
questionnaire. During the day we changed the task level of the 
tracks from easy to hard, by adding more obstacles to gain 
insight on the impact of different task complexity. 

Although the open space context was not easy to control, 
because of the frequent change of visitors, it provided the 
advantage of studying many participants with different socio-
demographic background in a short time. 

Based on various sources we decided to divide our 
measures into two categories. (1) Performance Measures, such 
as efficiency (i.e. task completion time) and effectiveness (e.g. 
number of collisions) and (2) User Satisfaction Measures: 
perceived task complexity, intuitiveness, satisfaction, and 
acceptance. We gathered this information with a questionnaire 
consisting of 15 items, which had to be rated on a 5-point 
Likert scale. Moreover, the whole study was videotaped to 
recheck the measured time and number of collisions, as well as 
to identify problems with the input devices. 

III. RESULTS 
We conducted the study with 24 participants, 10 female and 

14 male, aged from 11 to 66 years (M = 36.73, SD = 14.63). 
For further analysis four data records were removed because 
some participants solved the track without an opponent. 
Therefore, we didn’t use the data. Furthermore, one woman let 
her son win, in order to raise his mood, which would have 
influenced the data as well. As a consequence this data record 
was also removed.  

A.2. Late-breaking Report accepted for ACM/IEEE

International Conference on Human-Robot

Interaction 2013



 Difficulty of Track 
Easy Hard 

Mean Std Dev Mean Std Dev 
Intuitiveness 4.43 .72 4.73 .23 
Satisfaction 3.96 .84 4.24 .67 
Acceptance 4.50 .88 4.58 .53 

Fig. 1. The three scales grouped by track difficulty 
 

 
Fig. 2. Perceived task complexity dependant on used device and 

difficulty of track 

At first we conducted a manipulation check, i.e. the task 
complexity was successfully varied. Therefore, we ran a Mann-
Whitney-U Test on the track solution time and number of 
collisions. We checked if they significantly differ from the 
assumed track difficulty. The track solution time differed for 
the two tracks. The results of the test were as expected and 
significant, z = 2.162, p = .031. The mean rank for easy track 
was 7.00, while the average rank for hard one was 12.83. The 
number of collisions was higher for the hard track, z = 2.899,   
p = .004. The mean rank for easy track was 6.00, while the 
average rank for hard one was 13.50. 

Regarding performance the gesture-based interface enabled 
a less efficient control. The mean track solution time was 73 
seconds (SD = 23) and for the PC-remote 68 seconds           
(SD = 31). Concerning effectiveness the absolute number of 
collisions was 19 for the gesture-based interface and 16 for the 
PC-remote. 

Then we computed the scales for intuitiveness, satisfaction, 
and overall acceptance. The Cronbach’s Alpha for these factors 
was between .646 and .741. After deleting unreliable items, the 
internal reliability for our scales was satisfying. 

Regarding the three scales intuitiveness, satisfaction, and 
acceptance, there was a trend that all of them were perceived 
better, when solving the hard track, and experienced worse, 
when practicing on the easy one for both devices. [Fig. 1] 

Regarding intuitiveness the gesture-based interface was 
considered more intuitive, but in terms of satisfaction and 
acceptance the PC-remote was perceived better. 

We conducted Mann-Whitney U tests for the three scales 
(intuitiveness, satisfaction, and overall acceptance) for the 
types of device and the task difficulty, but no significant 
differences could be identified in the results. 

Another test revealed that the used input device correlates 
with the own satisfaction of the performance, z = -2.160,          
p = .031. The mean rank for satisfaction with the gesture-based 
interface was 7.80, while the mean rank for the PC-remote was 
13.20. Moreover, for the item likability, (I would like to use the 
device often) a difference, regarding task difficulty (z = 2.438, 
p = .015), could be identified. The mean rank for the easy track 
was 6.50, while the average rank for the hard one was 12.55. 
This implies that the likability was higher for harder tasks. 

IV. DISCUSSION 
Although the PC-remote outperformed the gesture-based 

interface in terms of efficiency and effectiveness, the difference 
concerning efficiency was much lower for the hard course. 

Apart from that, the difference in task completion times and 
number of collisions was huge, comparing easy and hard track, 
but not that much for the perceived task complexity. This 

means: real task complexity and perceived complexity does not 
always directly correlate. Apart from that, the perceived task 
complexity was also dependent from the used input device. It 
could not be proved statistically, but in the descriptive data we 
found a trend supporting this assumption. People using the PC-
remote perceived the easy course easier than participants using 
the gesture-based interface, but for the hard course it was the 
opposite. [Fig. 2] 

One possible reason for that phenomenon could be that 
people using the PC-remote, had problems steering the robot 
back to the starting point. They had to steer left when they 
wanted the robot to go right. Moreover, five participants, who 
used the gesture-based interface, stood up during the race and 
moved with the robot. This demonstrates the advantage of such 
an input modality for this type of task. 

To sum up, we could show that different input modalities 
and task complexity levels influenced our measures. Every task 
needs specific input modalities, depending on the complexity 
and situation to reach higher performance and user satisfaction. 
A next step will be to investigate speech input and the effect of 
the embodiment (functional vs. anthropomorphic). We assume 
this could also affect task performance and user satisfaction. 
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Das Roboter Rennen 

Fragebogen 
 
Geschlecht:     Alter: _________ TP Nr.: _________ 

m w 
 
Welche Steuerung wurde verwendet?  HandyPC 
 
 
 nicht wenig mittel  ziemlich sehr k.A. 
Die Strecke war schwer zu befahren       

Warum?  
______________________________________________________________ 

 
Wie sehr treffen die folgenden Aussagen zu? 
 
 nicht wenig mittel  ziemlich sehr k.A. 
Ich fand die verwendete Steuerung 
unnötig komplex. 

      

Ich fand die verwendete Steuerung 
leicht verständlich. 

      

Ich kann mir vorstellen, dass die 
meisten Leute sehr schnell lernen 
würden, mit dieser Steuerung 
umzugehen. 

      

Ich würde sehr viel lernen müssen, 
bevor ich mit dieser Steuerung 
umgehen könnte. 

      

Es war für mich schwierig, den 
Roboter zu steuern. 

      

 
Wie sehr treffen die folgenden Aussagen zu? 
 
 nicht wenig mittel  ziemlich sehr k.A. 
Ich denke, dass ich diese Steuerung 

gerne häufig benutzen würde. 
      

Ich war zufrieden mit der Leistung des 

Roboters. 
      

Ich war zufrieden mit der Leistung der 

verwendeten Steuerung. 
      

Ich war zufrieden mit meiner 

persönlichen Leistung. 
      

   
 
 

A.4. Questionnaire used in the Preliminary Study
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Wie sehr treffen die folgenden Aussagen zu? 
 
 nicht wenig mittel  ziemlich sehr k.A. 
Ich habe nicht die notwendigen 

Fähigkeiten, um Roboter mithilfe 

dieser Steuerung bedienen zu 

können. 

      

Ich habe das notwendige Wissen um 

mit dieser Steuerung umzugehen. 
      

Ich könnte keine Aufgabe mit Hilfe 

dieser Steuerung und den Roboter 

lösen, wenn niemand 

da wäre, den ich fragen kann. 

      

Unter Zeitdruck könnte ich niemals 

Erfolg bei der Zusammenarbeit mit 

Robotern haben wenn ich diese 

Steuerung verwende. 

      

Ich werde nie eine Aufgabe 

gemeinsam mit Robotern mit dieser 

Steuerung lösen können. 

      

 
 
Gibt es noch Anmerkungen? Wenn ja, welche? 
 
 
___________________________________________________________________________________________________ 
 
 

 

DANKE! 



 

GET 

  FILE='C:\Users\Stollnberger\Desktop\Diplomarbeit\50JahrFeier\AuswertungBilder50jFeier\50JFeierSPSS.sav'. 

DATASET NAME DataSet1 WINDOW=FRONT. 

*Table of all Variables 

 

DESCRIPTIVES VARIABLES=PA_NR Gender Age Device TrackDiff SolTime NumOfColl PerceivedTComplexity 

    IComplexity IComprehensible ILearn IHLearn IHard SUse SatRobot SatDevice SatSelf ASkill AKnowledge 

    AHelp APressure ANever 

  /STATISTICS=MEAN STDDEV MIN MAX. 

 

Descriptives 
Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Number of Participant 20 1 24 13,60 7,221 

Gender 20 1 2 1,45 ,510 

Age of Participant 19 11 66 35,63 15,075 

Used Device 20 1 2 1,50 ,513 

Difficulty of Track 20 1 2 1,60 ,503 

Track Solution Time in 

Seconds 

20 36 139 70,85 26,812 

Number of Collisions 20 0 5 1,75 1,743 

Perceived Task Complexity 20 2 5 3,90 1,071 

Used Control Device was 

needlessly complex 

20 3 5 4,55 ,686 

Used Control Device was easy 

comprehensible 

20 3 5 4,75 ,550 

Used Control Device was fast 

to learn 

19 1 5 4,32 ,946 

Used Control Device needs 

much to learn 

20 4 5 4,80 ,410 

Used Control Device was hard 

to use 

19 1 5 3,79 1,084 

Like to use device often 19 2 5 3,74 ,933 

Satisfied with rob ots' 

performance 

20 2 5 4,35 ,988 

Satisfied with devices' 

performance 

20 2 5 4,30 ,979 

Satisfied with own 

performance 

20 1 5 3,85 1,387 

Own required skill for 

commanding robots with 

device 

20 3 5 4,65 ,745 

A.5. Output of the Data Analysis of the Preliminary

Study



Own required knowledge for 

commanding robots with 

device 

20 3 5 4,65 ,587 

Would not be able to solve a 

task without help  

20 1 5 3,75 1,446 

Would not be able to solve a 

task under time pressure 

20 2 5 4,30 1,031 

Would never be able to solve 

a task 

20 1 5 4,60 1,095 

Valid N (listwise) 16     

 
DATASET ACTIVATE DataSet1. 

* Custom Tables. All Variables grouped by Used Device and Task Complexity 

 

CTABLES 

  /VLABELS VARIABLES=Age SolTime NumOfColl PerceivedTComplexity IComplexity IComprehensible ILearn 

    IHLearn IHard SUse SatRobot SatDevice SatSelf ASkill AKnowledge AHelp APressure ANever 

    Intuitiveness Satisfaction Acceptance TrackDiff Device 

    DISPLAY=LABEL 

  /TABLE Age [MEAN] + SolTime [MEAN] + NumOfColl [MEAN] + PerceivedTComplexity [MEAN] + IComplexity 

    [MEAN] + IComprehensible [MEAN] + ILearn [MEAN] + IHLearn [MEAN] + IHard [MEAN] + SUse [MEAN] + 

    SatRobot [MEAN] + SatDevice [MEAN] + SatSelf [MEAN] + ASkill [MEAN] + AKnowledge [MEAN] + AHelp 

    [MEAN] + APressure [MEAN] + ANever [MEAN] + Intuitiveness [MEAN] + Satisfaction [MEAN] + Acceptance 

    [MEAN] BY TrackDiff > Device 

  /CATEGORIES VARIABLES=TrackDiff Device ORDER=A KEY=VALUE EMPTY=INCLUDE. 

 
Custom Tables 

 

Difficulty of Track 

Easy Hard 

Used Device Used Device 

PC Control Mobile Control PC Control Mobile Control 

Mean Mean Mean Mean 

Age of Participant 44 28 38 32 

Track Solution Time in 

Seconds 

45 64 84 80 

Number of Collisions 0 1 3 3 

Perceived Task Complexity 5 4 4 4 

Used Control Device was 

needlessly complex 

5 4 5 5 

Used Control Device was easy 

comprehensible 

4 5 5 5 

Used Control Device was fast 

to learn 

4 5 5 4 



Used Control Device needs 

much to learn 

5 5 5 5 

Used Control Device was hard 

to use 

4 3 4 3 

Like to use device often 4 3 4 4 

Satisfied with rob ots' 

performance 

5 4 4 4 

Satisfied with devices' 

performance 

5 4 5 4 

Satisfied with own 

performance 

5 2 5 4 

Own required skill for 

commanding robots with 

device 

5 5 5 4 

Own required knowledge for 

commanding robots with 

device 

5 4 5 5 

Would not be able to solve a 

task without help  

4 4 3 4 

Would not be able to solve a 

task under time pressure 

5 4 4 4 

Would never be able to solve 

a task 

5 4 5 4 

Intuitiveness 4,25 4,60 4,75 4,71 

Satisfaction 4,42 3,50 4,19 4,28 

Acceptance 4,69 4,31 4,75 4,42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



*Cronbach Alpha for intuitiveness 

 

RELIABILITY 

  /VARIABLES=IComplexity IComprehensible ILearn IHLearn IHard 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 

 

Case Processing Summary 

 N % 

Cases Valid 18 90,0 

Excludeda 2 10,0 

Total 20 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,706 5 

 

Item-Total Statistics 

 Scale Mean if 

Item Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Used Control Device was 

needlessly complex 

17,61 4,840 ,603 ,607 

Used Control Device was easy 

comprehensible 

17,44 5,320 ,587 ,631 

Used Control Device was fast 

to learn 

17,89 4,810 ,351 ,719 

Used Control Device needs 

much to learn 

17,39 5,546 ,733 ,624 

Used Control Device was hard 

to use 

18,33 4,235 ,390 ,726 

 
 

 

 

 

 

 

 

 

 

 



*Cronbach Alpha for Satisfaction 

RELIABILITY 

  /VARIABLES=SUse SatRobot SatDevice SatSelf 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 

Reliability 
 
Scale: ALL VARIABLES 

 

Case Processing Summary 

 N % 

Cases Valid 19 95,0 

Excludeda 1 5,0 

Total 20 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,635 4 

 

Item-Total Statistics 

 Scale Mean if 

Item Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Like to use device often 12,53 6,708 ,313 ,630 

Satisfied with rob ots' 

performance 

11,89 5,988 ,420 ,564 

Satisfied with devices' 

performance 

11,89 5,322 ,649 ,415 

Satisfied with own 

performance 

12,47 4,930 ,356 ,646 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

*Cronbach Alpha for Acceptance 

 

RELIABILITY 

  /VARIABLES=ASkill AKnowledge AHelp APressure ANever 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 

Reliability 
 
Scale: ALL VARIABLES 
 

Case Processing Summary 

 N % 

Cases Valid 20 100,0 

Excludeda 0 ,0 

Total 20 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,629 5 

 

Item-Total Statistics 

 Scale Mean if 

Item Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Own required skill for 

commanding robots with 

device 

17,30 7,695 ,563 ,519 

Own required knowledge for 

commanding robots with 

device 

17,30 8,326 ,562 ,547 

Would not be able to solve a 

task without help  

18,20 7,116 ,177 ,741 

Would not be able to solve a 

task under time pressure 

17,65 5,818 ,743 ,373 

Would never be able to solve 

a task 

17,35 8,029 ,217 ,660 

 
 

 

 

 

 

 



 

*Compute Variable Intuitiveness without Hard to use for better Cronbach Alpha 

 

COMPUTE Intuitiveness=MEAN(IComplexity,IComprehensible,ILearn,IHLearn). 

EXECUTE. 

 

*Compute variable Satisfaction without own performance for better Cronbach Alpha 

 

COMPUTE Satisfaction=MEAN(SUse,SatRobot,SatDevice). 

EXECUTE. 

 

*Compute Variable Acceptance without Help for better Cronbach Alpha 

 

COMPUTE Acceptance=MEAN(ASkill,AKnowledge,APressure,ANever). 

EXECUTE. 

 

*Tables for new variables 

 

DESCRIPTIVES VARIABLES=Intuitiveness Satisfaction Acceptance 

  /STATISTICS=MEAN STDDEV MIN MAX. 

 
Descriptives 
 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Intuitiveness 20 3,00 5,00 4,6083 ,49567 

Satisfaction 20 2,33 5,00 4,1250 ,73523 

Acceptance 20 2,50 5,00 4,5500 ,66689 

Valid N (listwise) 20     

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

*Nonparametric Tests: Independent Samples. grouped by Device, only Single questions 

 

NPTESTS 

  /INDEPENDENT TEST (Age SolTime NumOfColl PerceivedTComplexity IComplexity IComprehensible ILearn 

    IHLearn IHard SUse SatRobot SatDevice SatSelf ASkill AKnowledge AHelp APressure ANever) GROUP 

    (Device) 

  /MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE 

  /CRITERIA ALPHA=0.05  CILEVEL=95. 

 
Nonparametric Tests 
 

 
 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



*Nonparametric Tests: Independent Samples. grouped by Difficulty of the task, only Single questions 

 

NPTESTS 

  /INDEPENDENT TEST (Age SolTime NumOfColl PerceivedTComplexity IComplexity IComprehensible ILearn 

    IHLearn IHard SUse SatRobot SatDevice SatSelf ASkill AKnowledge AHelp APressure ANever) GROUP 

    (TrackDiff) 

  /MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE 

  /CRITERIA ALPHA=0.05  CILEVEL=95. 

 
Nonparametric Tests 
 

 
 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



*Nonparametric Tests: Independent Samples. grouped by Device, computed Variables 

 

NPTESTS 

  /INDEPENDENT TEST (Intuitiveness Satisfaction Acceptance) GROUP (Device) 

  /MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE 

  /CRITERIA ALPHA=0.05  CILEVEL=95. 

 
Nonparametric Tests 
 

 
 
*Nonparametric Tests: Independent Samples. grouped by Task Complexity, computed Variables 

 

NPTESTS 

  /INDEPENDENT TEST (Intuitiveness Satisfaction Acceptance) GROUP (TrackDiff) 

  /MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE 

  /CRITERIA ALPHA=0.05  CILEVEL=95. 

 
Nonparametric Tests 
 

 
 

 
 

 



 

*Cronbach Alpha Test Intuitiveness without the item hard to use! 

 

RELIABILITY 

  /VARIABLES=IComplexity IComprehensible ILearn IHLearn 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 
 

Case Processing Summary 

 N % 

Cases Valid 19 95,0 

Excludeda 1 5,0 

Total 20 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,733 4 

 

Item-Total Statistics 

 Scale Mean if 

Item Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Used Control Device was 

needlessly complex 

13,84 2,585 ,486 ,696 

Used Control Device was easy 

comprehensible 

13,68 2,561 ,705 ,592 

Used Control Device was fast 

to learn 

14,11 1,988 ,474 ,768 

Used Control Device needs 

much to learn 

13,63 3,023 ,650 ,662 

 
 

 

 

 

 

 

 

 

 

 

 



 

*Cronbach's Alpha Test Satisfaction without the item Satisfied with own performance 

 

RELIABILITY 

  /VARIABLES=SUse SatRobot SatDevice 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 
 

Case Processing Summary 

 N % 

Cases Valid 19 95,0 

Excludeda 1 5,0 

Total 20 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,646 3 

 

Item-Total Statistics 

 Scale Mean if 

Item Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Like to use device often 8,74 3,316 ,218 ,832 

Satisfied with rob ots' 

performance 

8,11 2,322 ,514 ,463 

Satisfied with devices' 

performance 

8,11 2,099 ,693 ,195 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



*Cronbach's Alpha Test Acceptance without the item Never be able to solve a task without help 

 

RELIABILITY 

  /VARIABLES=ASkill AKnowledge APressure ANever 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 

Reliability 
 
Scale: ALL VARIABLES 
 

Case Processing Summary 

 N % 

Cases Valid 20 100,0 

Excludeda 0 ,0 

Total 20 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,741 4 

 

Item-Total Statistics 

 Scale Mean if 

Item Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Own required skill for 

commanding robots with 

device 

13,55 4,576 ,622 ,645 

Own required knowledge for 

commanding robots with 

device 

13,55 5,208 ,583 ,688 

Would not be able to solve a 

task under time pressure 

13,90 3,463 ,675 ,590 

Would never be able to solve 

a task 

13,60 4,147 ,396 ,790 

 



                                            
 
Roboter Interaktions Nutzerstudie 
 
 

Teilnehmer Nr.: ___ Salzburg, November 2012 

Datenverwertungserlaubnis 
 

Liebe/r Teilnehmer/in! 

 

Diese Studie wird von der HCI und Usability Unit des ICT&S Center (Advanced Studies and Research in 

Information and Communication Technologies & Society) der Universität Salzburg durchgeführt; die/der 

verantwortliche Projektleiterin ist Astrid Weiss. Um die Interaktion eines Roboters mit Benutzern zu 

optimieren, wird in dieser Studie die Interaktion zwischen Mensch und Roboter untersucht. 

Das Material (Text, Audio, Video, Fotos), das während der Studie erstellt wird, wird in weiterer Folge zur 

Auswertung bzw. Erarbeitung der entsprechenden Untersuchungsergebnisse verwendet. 

Sie erklären sich einverstanden, dass das Material für diese Auswertungen verwendet wird. Das 

anonymisierte Rohmaterial kann für Präsentationen und wissenschaftlichen Publikationen im Rahmen der 

Studie verwendet werden, wird aber nicht an Dritte weitergegeben. Fotos und Videoausschnitte können 

selektiv für die Präsentationen und wissenschaftlichen Ergebnisse bzw. der beispielhaften Darstellung des 

wissenschaftlichen Tätigkeitsfeldes der HCI und Usability Unit des ICT&S Centers verwendet werden. 

Mit dieser Erklärung gebe ich die Erlaubnis, als Teilnehmer/in an der Studie wie oben beschrieben, gefilmt 

bzw. aufgenommen zu werden. 

Ich verpflichte mich weiters dazu, sämtliche Informationen zu dieser Studie vertraulich zu behandeln und 

nicht an Dritte weiterzugeben. 

 

Name in Blockbuchstaben:   

 

Unterschrift:   

 

  

Bestätigung: Gerald Stollnberger (Diplomand ICT&S Center). 

Rückfragen: Tel. +43-664-2830-569, Email: gerald.stollnberger@sbg.ac.at 

 

Unterschrift:   

A.6. Data Consent Form for the Laboratory Study



 

Testphases 

Introduction and Briefing 

Guten Tag! Mein Name ist Gerald Stollnberger und ich bin am ICT&S Center der Universität Salzburg 

beschäftigt. Diese Studie findet im Rahmen meiner Diplomarbeit statt, welche ich am ICT&S Center 

zum Thema „Der Effekt von Eingabegeräten, verschiedenen Aufgabenschwierigkeiten und die Optik 

von Robotern auf die Performance in Mensch-Roboter Zusammenarbeit.“ schreibe. Vielen Dank für 

Ihre Bereitschaft an unserer Studie teilzunehmen. Sie helfen uns wertvolle Einblicke zu gewinnen und 

so unsere Forschungsarbeit voranzutreiben. 

Als erstes darf ich Sie bitten, diese Datenverwertungserlaubnis zu unterschreiben da der gesamte Test 

auf Video aufgezeichnet wird.. Selbstverständlich werden alle Daten vertraulich behandelt und 

anonymisiert, und nur für unsere Studienzwecke verwendet. 

Vielen Dank! Damit wir die Studie optimal auswerten können, müssen wir diesen Test auf Video 

aufzeichnen. Damit wir diese Daten auswerten dürfen, brauche ich Ihre schriftliche Einwilligung und 

bitte Sie diese Datenverwertungserlaubnis zu unterzeichnen. Selbstverständlich werden auch diese 

Daten vertraulich behandelt, anonymisiert und nur für unsere Studienzwecke verwendet. 

[Datenverwertungserlaubnis unterschreiben]  Appendix D 

Explanations 

In meiner Studie geht es darum, die Interaktion zwischen Mensch und Roboter zu analysieren. Zu 

diesem Zweck habe ich hier eine kleine Strecke mit Hindernissen aufgebaut, durch die Sie in weiterer 

Folge dann den Roboter steuern werden. 

[Der LegoMindstorms Roboter wird hergezeigt.]  

Damit wir die Daten im Anschluss an die Studie auswerten können zeichnen wir den Ablauf der Studie 

mit dieser Kamera auf. 

[Die Kamera wird nochmal kurz gezeigt.] 

Dies ist der Bautask den sie ausführen sollen, die Teile dafür sind in der Box die sie da vorne sehen. 

[Auf die Box zeigen] Ihre Aufgabe ist es den Roboter zu dieser Box zu steuern, diese aufzuheben und 

hier bei Ihnen abzulegen. Die verfügbaren Kommandos hierfür sind auf diesem Zettel vermerkt. 

[Kommandos zeigen] 

Bitte lassen Sie sich von der Aufzeichnung nicht stören. Es geht in der Studie nicht darum Ihr Verhalten 

zu analysieren, sondern das Zusammenspiel zwischen einem Roboter und einem Menschen. Sie 

können absolut nichts falsch machen! Haben Sie noch Fragen vor Beginn des Tests? 

[evtl. Beantwortung von Fragen] 

Test run 

[Lego Mindstorm wird im Szenario platziert] 

A.7. Studycycle



[Der Teilnehmer nimmt am Tisch platz] 

Wenn sie bereit sind, geben sie mir Bescheid. [Programm, Videoaufzeichnung und Stoppuhr  starten] 

Teilnehmer steuert Roboter durch den Kurs und holt die Box 

Teilnehmer baut die Lego Anleitung nach 

 

Das Szenario ist beendet sobald der Bautask komplett ist. [Zeiten für Robotersteuern und Bautask 

werden separat gemessen] 

[Analog für PC-Remote und Gesture-based Interface, also insgesamt 3 Durchläufe.] 

[Taskfragebogen ausfüllen lassen]  Appendix A 

[Workload Fragebogen ausfüllen lassen] Appendix C 

[Diese Phase findet 3mal statt mit 3 Bauanleitungen und 3 Input Devices] 

Final interview 

Zum Abschluss füllen Sie mir bitte noch einen letzten Fragebogen aus, danach möchte ich Ihnen noch 

eine Frage stellen. 

[Questionnaire on embodiment] Appendix B 

Frage: Glauben Sie, dass das äußere Erscheinungsbild des Roboters für diese Aufgabe geeignet war? 

[Eventuell nachfragen warum, etc..] 

Debriefing 

Wir sind nun am Ende des Test angelangt. Ich bedanke mich sehr herzlich für Ihre Teilnahme und Ihr 
Engagement. Kann ich Ihnen noch Fragen zur Studie beantworten? 

[Researcher answers the questions of the participant] 

Vielen Dank, auf Wiedersehen! 

 

 



 
 
 
 

ICT&S, Human-Computer Interaction & Usability Unit      www.icts.sbg.ac.at 

Roboter Interaktionsstudie  
Aufgabenfragebogen 

 
Geschlecht:     Alter: _________ TP Nr.: _________ CT Nr.:_________ 

m w 
Welche Steuerung wurde verwendet?  HandyPC Sprache 
 
 nicht Wenig mittel  ziemlich sehr k.A. 
Die Strecke war schwer zu befahren       

Warum?  
______________________________________________________________ 
 

 nicht Wenig mittel  ziemlich sehr k.A. 
Die Bauaufgabe war schwer zu 
vervollständigen 

      

Warum?  
______________________________________________________________ 

Wie sehr treffen die folgenden Aussagen zu? 
 
 nicht wenig mittel  ziemlich sehr k.A. 
Ich fand die verwendete Steuerung 
unnötig komplex. 

      

Ich fand die verwendete Steuerung 
leicht verständlich. 

      

Ich kann mir vorstellen, dass die 
meisten Leute sehr schnell lernen 
würden, mit dieser Steuerung 
umzugehen. 

      

Ich würde sehr viel lernen müssen, 
bevor ich mit dieser Steuerung 
umgehen könnte. 

      

Es war für mich schwierig, den 
Roboter zu steuern. 

      

 
Wie sehr treffen die folgenden Aussagen zu? 
 
 nicht wenig mittel  ziemlich sehr k.A. 
Ich denke, dass ich diese Steuerung 

gerne häufig benutzen würde. 
      

Ich war zufrieden mit der Leistung des 

Roboters. 
      

Ich war zufrieden mit der Leistung der 

verwendeten Steuerung. 
      

Ich war zufrieden mit meiner 

persönlichen Leistung. 
      

   

A.8. Questionnaire concerning the User Satisfaction

Measures used in the Laboratory Study
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Wie sehr treffen die folgenden Aussagen zu? 
 
 nicht wenig mittel  ziemlich sehr k.A. 
Ich habe nicht die notwendigen 

Fähigkeiten, um Roboter mithilfe 

dieser Steuerung bedienen zu 

können. 

      

Ich habe das notwendige Wissen um 

mit dieser Steuerung umzugehen. 
      

Ich könnte keine Aufgabe mit Hilfe 

dieser Steuerung und den Roboter 

lösen, wenn niemand 

da wäre, den ich fragen kann. 

      

Unter Zeitdruck könnte ich niemals 

Erfolg bei der Zusammenarbeit mit 

Robotern haben wenn ich diese 

Steuerung verwende. 

      

Ich werde nie eine Aufgabe 

gemeinsam mit Robotern mit dieser 

Steuerung lösen können. 

      

 
 

 

St
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e 
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zu
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Das System ist sehr betriebssicher.      

Das System hat die Fähigkeit das umzusetzen, was ich umsetzen will.       

Das System ist extrem zuverlässig.       

Das System hat die Funktionalität die ich brauche.      

Für mich funktioniert das System.      

Das System hat die Eigenschaften, die ich für die Erfüllung meiner 

Aufgaben brauche. 
     

Das System lässt mich nicht im Stich. 

 
     

 
Gibt es noch Anmerkungen? Wenn ja, welche? 
 
___________________________________________________________________________________________________ 

DANKE! 
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Roboter Interaktionsstudie 
Anstrengungsfragebogen 

TP Nr.: _________ CT Nr.:_________ 
  
Mit diesem Fragebogen möchte ich herausfinden, wie anstrengend oder belastend Sie das 
Bearbeiten des Tasks (Roboter steuern und Bauaufgabe) empfunden haben. 
Im ersten Teil des Fragebogens sollen Sie ankreuzen, wie anstrengend Sie das Bearbeiten des 
Tasks in mehrerer Hinsicht empfunden haben. Kreuzen Sie bitte die für Sie zutreffende 
Anstrengungsstärke an: 
 
Unter geistiger Beanspruchung versteht man das Ausmaß, in dem Denk- und 
Verstehensbemühungen notwendig waren, um die Aufgabe zu erfüllen (z.B. Denken, 
Entscheiden, Berechnen, Erinnern, Nachschauen, Suchen,…) 
Meine geistige Beanspruchung war: 
                    
Niedrig           Hoch 
 
Mit körperlicher Beanspruchung ist gemeint, wie viel körperliche Aktivität nötig war, um die 
Aufgabe zu erfüllen.  
Meine körperliche Beanspruchung war: 
                    
Niedrig           Hoch 
 
Mit Zeitdruck ist die Geschwindigkeit gemeint, in der die Aufgabe ausgefüllt werden musste 
(langsam oder schnell, ausreichend Zeit zum Fertigwerden oder zuwenig Zeit). 
Der Zeitdruck war: 
                    
Niedrig            Hoch 
 
Der Leistungsdruck bezieht sich darauf, inwieweit Sie denken, die Ziele der Aufgabe erreicht zu 
haben, wie zufrieden Sie mit Ihrer Leistung waren. 
Der Leistungsdruck war: 
                    
Niedrig            Hoch 
 
Die Mühe bezieht sich darauf, wie hart man arbeiten musste, um die Ziele der Aufgabe zu 
erreichen. 
Ich habe mir während dem Bearbeiten der Aufgabe Mühe gegeben: 
                    
Niedrig            Hoch 

 
Die Frustration bezieht sich darauf, wie unsicher, entmutigt, verwirrt, gestresst oder 
genervt man sich während der Erfüllung der Aufgabe gefühlt hat. 
Meine Frustration war: 
                    
Niedrig            Hoch 

DANKE! 


A.9. The NASA Raw Task Load Index used in the

Laboratory Study
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Roboter Interaktionsstudie 

Fragebogen zum äußeren Erscheinungsbild 
 
Geschlecht:     Alter: _________ TP Nr.: _________ 

m w 
 
Hatte der Roboter ein Gesicht?  JaNein  
 
Bitte beurteilen Sie Ihren Eindruck des Roboters auf diesen Skalen: 
 
 1 2 3 4 5  

Unecht 
 

     Natürlich 

Wie eine Maschine 
 

     Wie ein Mensch 

Hat kein 
Bewusstsein 

     
Hat ein 

Bewusstsein 
Künstlich 

 
     Realistisch   

Bewegt sich steif      
Bewegt sich 

flüssig 
 
Gibt es Anmerkungen? Wenn ja, welche? 
 
___________________________________________________________________________________________________ 
 

DANKE! 

A.10. The Goodspeed Questionnaire about

Anthropomorphism in German



“The Harder it Gets”: Exploring the Interdependency of Input
Modalities and Task Complexity in Human-Robot Collaboration

Gerald Stollnberger,1 Astrid Weiss2 and Manfred Tscheligi3

Abstract— To enhance successful cooperation in human-robot
collaboration tasks, many factors have to be considered. We
assume, that for specific levels of task complexity, there is
always one complementing input modality which increases the
corresponding user satisfaction and performance. In order
to identify the ideal mix of these elements, we present two
experiments in this paper. The first study was in a public
space and the second in a controlled laboratory environment.
Besides investigating the correlation of task complexity and
input modality, we explored, whether the appearance of the
robot also has an impact, within the lab environment. We
identified strong interdependencies between task complexity
and input modalities. Specifically with hard tasks, differences
in performance and satisfaction were often highly significant.
Additionally we found, that the perceived task complexity
was strongly dependent on the cognitive workload, driven by
the used input modality, which also emphasized the strong
coherency of these factors. Regarding the influence of the
appearance of the robot, we found, that the human-like shape
increases users’ self confidence, to be able to solve a task without
help.

I. INTRODUCTION

Human-Robot Collaboration (HRC) has become more and
more important in different contexts, such as in modern
homes and hospitals, as assistive systems or in a factory
context as assembly, painting, inspection and transportation
robots.

From our point of view, it is important for all of these
contexts to identify which input modality is most suitable
for cooperation in turn-taking tasks, especially concerning
different levels of task complexity and different appearances
of robots. Therefore, we wanted to investigate the impact
and correlation of input devices with different levels of
task complexity and different robot appearances. In order to
explore our assumption, we built a Lego Mindstorm robot,
which can be controlled with three different input devices (a
gesture-based input system on a mobile phone, a PC-remote
control interface, and a speech recognition system based on
Java) and studied these input modalities in two experiments.
One study was a field trial in a public context; the second
took place in a controlled laboratory setting.

In the following, we want to provide a short summary
of related work, our experimental setups, the results of both
studies, a discussion part, and finally an outlook about future
work.

1G. Stollnberger is with the ICT&S Center, University of Salzburg, 5020
Salzburg, Austria gerald.stollnberger at sbg.ac.at

2A. Weiss is with the ICT&S Center, University of Salzburg, 5020
Salzburg, Austria astrid.weiss at sbg.ac.at

3M. Tscheligi is with the ICT&S Center, University of Salzburg, 5020
Salzburg, Austria manfred.tscheligi at sbg.ac.at

II. RELATED WORK

One of the most important aspects of successful human-
robot cooperation is the input modality, which is used to
control and interact with the robot.

It is often assumed, that most of the cooperation be-
tween humans and robots can be enabled by speech input.
However, even with advancing speech processing systems,
it is still challenging to make computers understand natural
language. For example, Cantrell et al. [1] worked on the
issue of teaching natural language to an artificial system.
Their system was able to parse a wide variety of spoken
utterances, but it still produced errors, which can decrease
the performance and user satisfaction rate of the cooperation.
Furthermore, Ayres and colleagues [2] also achieved good
results in implementing speech commands for not fully
embedded systems and robots, using Lego Mindstorms and
the Java programming language. They mentioned that further
implementation and testing work, especially with users, is
required. This was, amongst others, a reason for us to
consider simple speech commands to investigate our research
assumption. Additionally, the fact that a system which can
be controlled by speech, offers important advantages in the
interaction, namely a high degree of freedom (both hands
are free for other tasks) and a high degree of familiarity with
this kind of modality (naturalness of speech). Moreover, the
approach of using a small set of speech for commands for
collaborating with robots seems to be very promising [1],[2],
which motivated us to use a similar small set of commands
in order to increase the accuracy.

However, there are other input modalities, apart from
speech, to interact with robots such as gesture and keyboards,
which can be suitable for specific context situations (e.g.,
high ambient noise). Rouanet and colleagues [3],[4] com-
pared a keyboard-like and a gesture-based interface to control
a system that was driving on two courses, differing in com-
plexity. Results showed that different task complexities had a
significant impact on the user performance and satisfaction.
Whereas, the input modalities were considered rather equally
satisfying and efficient. However, both the keyboard-like and
the gesture based interface showed promising results, leading
to our decision to further investigate these two types of input
modalities additional to speech.

Moreover, the research of Rouanet et al. indicated the
importance of taking different task types and complexities
into account when investigating and enhancing human-robot
collaboration. Thus, in our explorative studies, we wanted to
manipulate the task complexity in a similar way as in [3]
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and we also included findings of task complexity research,
how to categorize the difficulty of a cooperation task. In the
work of Stork et al. [5], different types of Lego tasks were
categorized into different complexity levels.

Another interesting approach is the use of multi-touch
interfaces for commanding robots. According to Hayes et
al. [6], it is not satisfying to command robots by static
input devices, such as a mouse or a keyboard, above all, in
situations where the user is on the move, or needs the hands
free for a secondary or even for the primary task. They could
show, that multi-touch interfaces provide a good usability
and a lower overall workload for users controlling the robot.
This was another reason for us to compare more static input
modalities, like a PC-remote, to more flexible ones, like a
gesture-based interface or a speech control system.

All in all, a large amount of research effort has already
been undertaken within the research field of HRC to compare
input modalities. A lot of research has already been done to
analyze the advantages and disadvantages of different modal-
ities, sometimes even considering task-specific differences.

However, what we believe to be missing so far, is a de-
tailed analysis of the correlation between: (1) input modality,
(2) task complexity, and (3) robot appearance (functional
vs. human-like). Is there an ideal mix of input device and
appearance of robots for different levels of task complexity,
in terms of the resulting user satisfaction and the overall
performance?

To answer this question, we conducted two user studies,
(1) one in a public setting and (2) one in a controlled
laboratory setting. In order to take the different levels of
task complexities into account, we used the findings of task
complexity research with regard to assembly tasks by Stork
et al. [5] in our second experiment.

Furthermore, we have come to the conclusion, that the
impact of different appearances of robots should also not be
underestimated, such as in the work of Groom et al. [7], as
different tasks could be considered as more suitable for a
human-like than a machine-like robot.

III. EXPERIMENTAL SETUP

For our experiments, we built two identical robots, driven
by The Snatcher from Laurens [8], which were able to drive
around and to pick up and transport a box.

A. Preliminary Study in a Public Context

In order to gather an initial insight into the interplay of
input modalities and task complexity levels, we conducted
a study in a public context during a university event, where
participants competed with each other in a race situation.
[Fig. 1] [9]

• 24 Participants took part in a Lego Mindstorm Race (10
female, 14 male; age from 11 to 66 years; mean 36.73
years; SD: 14.63)

• The experiment was set up as a 2x2 between-subject
experiment.

• Two different input devices; (1) PC-remote control and
(2) a gesture-based interface, were explored.

• Two tracks which differed in the number of obstacles
(Easy/Hard).

• Performance measures were efficiency (track solution
time) and effectiveness (number of collisions).

• User satisfaction measures included perceived task com-
plexity, intuitiveness, satisfaction, and acceptance gath-
ered by questionnaires, driven from the USUS evalua-
tion framework [10], and from a survey used to assess
the intuitiveness of the Nabaztag Robot as an ambient
interface [11].

• For further analysis four data records were removed
because a few participants solved the track without an
opponent.

Fig. 1: The Lego Mindstorm race track (Hard) with the two
robots

B. Structured Study in a Controlled Laboratory Setting

To enable a deeper investigation (after promising results
from the preliminary study) of the correlation of different in-
put modalities, task complexities, and appearances of robots,
we conducted a second experiment in a highly structured
and controlled laboratory setting. In addition to the input
modalities in the preliminary study, we also added speech
as third input modality, using Bluetooth for communicating
with the robot and Java and Sphinx-4 [12] for parsing the
verbal utterances.

In the second study, participants had to command the
robot to transport boxes containing the parts for the assembly
tasks, using three different input modalities, and solve 3
Lego building tasks differing in complexity. Altogether, 24
participants (11 female, 13 male, aged from 15 to 61 years,
mean: 29.46 years; SD: 12.19) took part in this study.

The findings of Stork et al. [5] inspired us regarding
the manipulation of the task complexity. Participants had
to build a small Lego house, divided into three different
building tasks: (1) Firstly the frame of the house, which
was, according to [5], the easiest type of building task (class
frame, easy), followed by (2) grouping together the frame
with the prebuilt door (class group, medium). The last step
was to finish the Lego house by building the roof (3), which
was the most complex type of building task in our experiment
(class roof, hard).



The study was set up as a 3x3x2 mixed experimental
design. Task complexity and input modality was tested
with a within-subject design and the factor appearance was
between-subject. (Half of the participants worked with the
functional robot, the others with the same robot with a
human-like added feature) [Fig. 2].

All participants had to use all three input devices and to
solve all of the construction tasks. In order to avoid outside
factors (e.g., learning effects) which could influence our
results, we varied the sequence of input devices participants
had to use (e.g., speech first, then gesture, then PC remote).
After each task, they had to fill in each questionnaire, with
exception of the survey about the robot’s appearance. This
was used only once per participant, since a participant either
worked with a functional or with a human-like robot.

For the purpose of investigating the effect of different ap-
pearances of robots, we used a 3D printer to produce a head,
designed by Neophyte, for our robot. 1 We were interested to
see, if this minimalistic human-like cue is already sufficient
to impact the user satisfaction with different input modalities,
depending on the task difficulty.

As performance measures, we used the track solution time
and building solution time to measure efficiency and the
number of collisions to measure effectiveness. Additionally,
the following user satisfaction measures were gathered by
the same questionnaires as in the previous study: perceived
task complexity, intuitiveness, satisfaction, and acceptance.
Furthermore, we were interested in the cognitive workload
of the participants after using each input modality, which was
assessed by the German version of the NASA RTLX [13].
About trust, participants have in each input modality, we
used a questionnaire following the guidelines of McKnight
et al. [14], and for data about the appearance of the robot,
we used the German version of the Godspeed questionnaire.
[15]

Fig. 2: The functional and the more human-like robot with
a 3D printed head following the model of Neophyte.

IV. RESULTS

A. Results of the Preliminary Study
We first conducted a manipulation check which revealed

that the task complexity was successfully varied. Concerning

1http://www.thingiverse.com/thing:8075

a Mann-Whitney U test, there were significant differences
between the easy and hard track in solution time and also in
the number of collisions.

Regarding performance, the PC-remote outperformed the
gesture-based interface, which was on the other hand per-
ceived to be more intuitive. The difference was much lower
for the easy track, strongly suggesting the relationship be-
tween task complexity and input modalities.

Concerning the three scales intuitiveness, acceptance, and
satisfaction all of them were perceived better when solving
the hard course. This initially sounds to be paradox. How-
ever, it also indicates the strong connectivity between task
complexity and input modality. In our opinion, this tendency
can be explained by the fact that when people manage to
solve more challenging tasks, they are more satisfied with
themselves and also with the system, when successfully
achieving a goal. A more detailed analysis of the results can
be found in our previous publication [9].

B. Results of the Laboratory Study

We started with a manipulation check to identify, if the
modification of the task complexity, regarding the building
tasks, was successful. The Kruskal-Wallis test revealed that
the distribution was highly significant for the building solu-
tion time (H(2) = 36.530, p = 0.000), with a mean rank of
22.22 for class frame (easy), 32.22 for class group (medium),
and 58.26 for class roof (hard) [Fig. 3]. In other words, the
roof task was the most difficult one, as intended.

Fig. 3: The mean time needed for accomplishing the building
tasks in seconds

Furthermore, the results of the perceived building com-
plexity were significant (H(2) = 9.188, p = 0.010), with a
mean rank of 46.34 for class frame, 36.78 for class group,
and 30.88 for class roof.

The test also revealed that the distribution of the item
“the used input device was fast to learn” offered significant
results (H(2) = 8.166, p = 0.017), with a mean rank of 47.44
for class frame, 33.66 for class group, and 32.90 for class
roof. It could be interpreted that people perceived the input
devices to be easier to learn, as they accomplished an easier



building task. This also emphasizes the relationship between
task complexity and used input device.

In addition, the physical demand gathered by the NASA
RTLX was significant (H(2) = 6.044, p = 0.49), with a mean
rank of 30.90 for class frame, 45.38 for class group, and
37.72 for class roof.

These facts indicate:
• That the building complexity was successfully varied,
• The results of Stork et al. [5], which were used for our

manipulation, could be reproduced.
After the manipulation check, we computed the scales of

the questionnaires for the items intuitiveness, satisfaction,
overall acceptance, trust, and its subcategories reliability
and functionality, cognitive workload, and robot appearance.
Therefore, we ran a Cronbach’s Alpha test to check the
internal reliability of all these factors.

For the intuitiveness scale, which consisted of 5 questions,
we reached a Cronbach’s Alpha of 0.792.

The Alpha value for satisfaction, with 4 questions, was
0.912 and for acceptance, which consisted of 5 items, 0.639.

For the complete trust questionnaire of 7 questions, the
value was 0.955, for the subcategories reliability (4 items)
0.948, and functionality (3 items) 0.904.

The cognitive workload, consisting of 6 items, scored
an Alpha value of 0.733, and, last but not least, for the
appearance questionnaire, the result was 0.745.

For all of our scales, no deletion of items would have
improved the Alpha values.

As expected, we were able to reproduce the findings of
the preliminary study concerning the performance. The mean
number of collisions, when using the PC-remote, was 0.16
(SD: 0.374), for the gesture-based interface 0.24 (SD: 0.723),
and for the speech control 2.10 (SD: 1.294). [TABLE I]

TABLE I: Performance measures of the input modalities

Used0Device
PC0Control Gesture-based Speech

Mean
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

Track0Solution0Time
in0Seconds

55.20 9.10 79.96 19.19 145.65 61.58

Number0of0Collisions 0.16 0.37 0.24 0.72 2.10 1.29

A Kruskal-Wallis test, moreover, revealed differences in
the perception of the control complexity (H(2) = 23.060, p =
0.000), the mean rank was 47.52 for the PC-remote control,
followed by 40.50 for the gesture-based interface and 21.76
for the speech control.

Similarly, we could identify interesting differences in user
satisfaction , depending on the used input device:

• For the intuitiveness scale (H(2) = 25.238, p = 0.000),
the average rank for the PC-remote was 52.74, followed
by 38.76 for the gesture-based interface and 22.50
for the speech control. This is a contradiction to the
preliminary study [9], where the gesture-based interface
was considered more intuitive than the PC-remote.

• For the satisfaction scale (H(2) = 31.947, p = 0.000),
the average rank for the PC-remote was 52.66, followed
by 42.44 for the gesture-based interface and 18.90 for
the speech control.

• For the acceptance scale (H(2) = 16.467, p = 0.000), the
average rank for the PC-remote was 48.74, followed by
40.64 for the gesture-based interface and 24.62 for the
speech control.

• For the trust scale (H(2) = 45.001, p = 0.000), the
average rank for the PC-remote was 55.08, followed
by 43.78 for the gesture-based interface and 15.14 for
the speech control.

• For the reliability scale (H(2) = 47.850, p = 0.000), the
average rank for the PC-remote was 55.90, followed by
43.46 for the gesture-based interface and 14.64 for the
speech control.

• For the functionality scale (H(2) = 34.895, p = 0.000),
the average rank for the PC-remote was 51.46, followed
by 44.66 for the gesture-based interface and 17.88 for
the speech control.

The above mentioned scales, used a five point Likert-scale
from 1 (totally disagree) to 5 (totally agree). For the cognitive
workload, we used a scale between 1 (very low) and 20 (very
high) which also revealed a highly significant difference
concerning the used input modality.

• For the cognitive workload scale (H(2) = 17.924, p =
0.000), the average rank for the PC-remote was 26.36,
followed by 35.44 for the gesture-based interface and
52.10 for the speech control.

Interestingly, even the small change of the appearance of
the robot by means of the 3D printed head impacted the
results, even though as expected the robot with the head was
not considered much more human-like than the functional
one.

A Mann-Whitney U test showed, that for the single item
“I would not be able to solve a task with the robot without
help” more people tended to disagree when using the more
human-like robot (z = 2.054, p: 0.040). The mean rank for
the robot with head was 42.04, while the average rank for
the functional one was 33.62. In other words, participants
who collaborated with the more human-like robot were
more self-confident in being able to solve a task on their
own. Thus, we assume that even a minimalistic human-like
appearance increases participants’ positive experience while
collaborating with a robot.

We further found out that participants, especially after
using the speech control, which caused the highest mental
workload, perceived the building task more complex, al-
though the building task was independent from the input
modality. (People had always to control the robot for getting
the required parts and after that to assembly the parts) [Fig.4]

In Fig. 5, it can also be seen that the item “The control
device was needlessly complex” was rated nearly the same
for the easiest building task (frame), but differed much more
for the classes group and roof, which again demonstrates a



Fig. 4: The building tasks were perceived more complex,
when the more complex input modality was used (5 = Easy,
1 = Hard)

strong relationship between building complexity and input
modality.

Fig. 5: Perceived control complexity in dependency of the
building tasks (5 = Totally disagree, 1 = Totally agree)

In general, regarding the intuitiveness scale, for example,
it could be shown that, especially, when the most complex
input modality (in our case speech control) and more com-
plex assembly tasks (roof and group) converged, the user
satisfaction measures were rated much lower. [Fig. 6] This
tendency could be observed for all of our user satisfaction
measures and also for the cognitive workload results.

Summarizing, in performance and user satisfaction mea-
sures, the PC-remote outperformed the other two input
modalities. However, the differences for simpler tasks were
much lower than for hard tasks, matching the findings in the
preliminary study.

The speech control was rated lowest in all categories in
our study, which could be a consequence of the latency
as it is often a problem of speech control systems. For
example, if the participant wanted to stop the robot, it
took a few milliseconds until the robot actually stopped, a
fact which people had to take into account. On the other

Fig. 6: Intuitiveness rated lower for complex devices and
assembly tasks (5 = High, 1 = Low)

hand, the accuracy of the speech control was satisfying for
most of the participants and the disadvantage driven by the
latency could be compensated with little experience using the
device. For simple tasks, like going forward or backward, it
would absolutely suit, according to the comments of many
participants.

Furthermore, some people mentioned that although the
gesture-based interface did not achieve the best values in
terms of performance, it was a pleasant experience to use
it, which can indeed be considered as an advantage of
this modality. This fact could provide a better long-term
motivation and satisfaction for users. In addition, if a person’s
internal motivation is higher, then they are more receptive to
the information [16]. As a consequence, the learning process
will be faster and with a higher output.

V. CONCLUSION

In most cases, there is only one possibility to control a
robot, but many different tasks to solve in collaboration.
Due to the strong interdependency of input modality and
task complexity, the design process for planning human-
robot collaborative systems should specifically include the
tasks which have to be fulfilled. As we have seen, it is not
really important for easy tasks, which input modality is used
and provided. The differences in performance and also in
the user satisfaction rankings were small and not statistically
significant. In other words the user was always satisfied when
solving easy tasks, and performed them equally well, no
matter which input modality was provided. However, the
differences in performance and user satisfaction were larger
for hard tasks and need to be taken into consideration because
of their statistical significance. Our studies revealed that in
challenging tasks, users preferred the PC-remote control,
because it was considered the most accurate, reliable, and
familiar input modality. We are aware of the limitations
of our work; we can only make assumptions for the input
modalities we studied and compared and that this preliminary
work cannot be generalized to all variations of speech,
gesture, and point-and-click input.



Therefore, our overall goal is to further explore the ideal
input modality for a set of tasks, categorized according to
their level of complexity. Additional to complexity, we want
to take other factors into account, such as whether or not the
robot is physically collocated with the user, ambient noise,
light conditions and other factors such as if the robot could
get out of sight during the interaction or the user needs one or
both hands free for another task, like the necessity of carrying
anything. Moreover, it has to be clear, if the user needs to
have the possibility of mobility during the interaction. This
classification will enable the possibility to provide the ideal
complementing input modality, for each type of task.

In our opinion, a typical multimodal interface, which
provides many different input possibilities at once, is not
the ideal solution for successful human-robot cooperation.
We strongly believe that a more adaptive multimodality is
needed, which could only be achieved if the tasks have been
well classified before.

Finally, we assume, as an initial tendency was found in
our experiments, that a humanoid design of robots gener-
ates a more positive feeling in the user. Therefore, further
investigation of how to produce minimal cues on the robot,
to enhance the overall cooperation from the user’s point of
view is needed. This would be an advantage we should avail
ourselves.

All in all, the two studies presented in this paper, proved
our assumption about the interdependency of task complexity
and input modality in HRC. For us, these studies are a
starting point for a series of controlled experiments, to further
decode this interdependency and propose adaptive multi-
modal HRC scenarios.

VI. FUTURE WORK

In a next step, we aim to investigate the possibility to
reproduce our findings if participants had a longer training
phase and got used to all input modalities. Therefore, we
plan to give participants the robot and the input modalities
for usage and training in their private home for one week,
before conducting a controlled experiment in the lab again.

Moreover, we want to gain a deeper insight into the impact
of different appearances; therefore, a more human-like robot
(e.g., the Nao robot) should be compared to our functional
Lego Mindstorm prototype. Similarly, due to the fact that
no subject worked with both types of robots, in a next
study, a within-subject approach for further investigation is
considered.

Finally, we want to explore the concept of an “intelligent”
multimodal interface, where people are free to choose which
input modality they need in specific situations. By intelligent
we understand, that the interface reacts also in accordance
to the context and other circumstances like light, noise,
and temperature and provides a proper input modality and
an according feedback modality (e.g., Visual, haptic, and

auditive). The resulting combinations of input modality and
feedback mechanism for different task complexities should
enable context-specific human-robot cooperation.
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* All Variables 

 

DESCRIPTIVES VARIABLES=TP_NR Gender Age CTask Device TSolTime CSolTime NumOfColl Distraction 

    PerceivedTComplexity PerceivedBComplexity IComplexity IComprehensible ILearn IHLearn IHard SUse 

    SatRobot SatDevice SatSelf ASkill AKnowledge AHelp APressure ANever TFailSafeR TSkillF TReliableR 

    TFunctionalityF TWorksR TFeaturesF TAbandonR NRTLXMentalDemand NRTLXPhysicalDemand 

    NRTLXTimePressure NRTLXPerformPressure NRTLXEffort NRTLXFrustration RobotHead E1 E2 E3 E4 E5 

  /STATISTICS=MEAN STDDEV MIN MAX. 

 
Descriptives 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Number of Participant 72 1 25 13,00 7,260 

Gender 72 1 2 1,44 ,500 

Age of Participant 69 15 61 29,46 12,192 

Number of Construction Task 72 1 3 2,00 ,822 

Used Device 72 1 3 2,00 ,822 

Track Solution Time in Seconds 65 42 300 89,89 50,736 

Building Solution Time in 

Seconds 

71 17 470 63,33 70,306 

Number of Collisions 68 0 5 ,74 1,200 

IAT Measurement 0     

Perceived Control Complexity 70 1 5 4,18 1,147 

Perceived Building Complexity 72 1 5 4,44 ,919 

Used Control Device was 

needlessly complex 

71 2 5 4,49 ,880 

Used Control Device was easy 

comprehensible 

72 1 5 4,39 1,126 

Used Control Device was fast to 

learn 

72 1 5 4,11 1,110 

Used Control Device needs 

much to learn 

72 2 5 4,61 ,715 

Used Control Device was hard to 

use 

72 1 5 4,04 1,191 

Like to use device often 72 1 5 3,55 1,369 

Satisfied with rob ots' 

performance 

71 1 5 3,81 1,213 

Satisfied with devices' 

performance 

71 1 5 3,64 1,381 

Satisfied with own performance 68 1 5 3,93 1,026 

Own required skill for 

commanding robots with device 

72 1 5 4,37 1,075 

Own required knowledge for 

commanding robots with device 

72 1 5 4,27 1,166 

Would not be able to solve a task 

without help  

72 1 5 4,49 ,891 

Would not be able to solve a task 

under time pressure 

72 1 5 4,16 1,066 

Would never be able to solve a 

task 

72 2 5 4,72 ,648 

The System is very FailSafe 72 1 5 3,72 1,157 

The System has the ability to 

handle what I want 

72 2 5 4,04 1,032 

The System is very reliable 72 1 5 3,44 1,233 

The System has the required 

functionality 

72 1 5 4,24 ,984 

The System works for me 72 1 5 4,12 1,127 

The System provides the 

Features I need for solving 

Tasks 

72 1 5 4,27 1,004 

The System does not abandon 

me 

72 1 5 3,64 1,237 

A.12. Output of the Data Analysis of the Laboratory

Study



Mental Demand 72 1 17 6,89 4,492 

Physical Demand 72 1 9 2,45 1,803 

Time Pressure 72 1 14 3,39 2,837 

Performance Pressure 72 1 20 8,43 5,985 

Effort needed 72 1 20 9,51 5,999 

Frustration 72 1 18 4,80 4,662 

Existence of a Head 72 0 1 ,52 ,503 

Unecht - Natürlich 24 1 4 2,20 1,080 

Wie eine Maschine - Wie ein 

Mensch 

24 1 3 1,40 ,645 

Hat kein Bewusstsein - Hat ein 

Bewusstsein 

24 1 3 1,28 ,614 

Künstlich - Realistisch 24 1 4 1,72 1,021 

Bewegt sich steif - Bewegt sich 

flüssig 

24 1 4 2,00 ,913 

Valid N (listwise) 0     

 

 

* Custom Tables grouped by Number of Construction Task 

 

CTABLES 

  /VLABELS VARIABLES=Age TSolTime NumOfColl CSolTime PerceivedTComplexity PerceivedBComplexity 

    IComplexity IComprehensible ILearn IHLearn IHard SUse SatRobot SatDevice SatSelf ASkill AKnowledge 

    AHelp APressure ANever TFailSafeR TSkillF TReliableR TFunctionalityF TWorksR TFeaturesF TAbandonR 

    NRTLXMentalDemand NRTLXPhysicalDemand NRTLXTimePressure NRTLXPerformPressure NRTLXEffort 

    NRTLXFrustration RobotHead E1 E2 E3 E4 E5 CTask 

    DISPLAY=LABEL 

  /TABLE Age [S][MEAN] + TSolTime [S][MEAN] + NumOfColl [S][MEAN] + CSolTime [S][MEAN] + 

    PerceivedTComplexity [S][MEAN] + PerceivedBComplexity [S][MEAN] + IComplexity [S][MEAN] + 

    IComprehensible [S][MEAN] + ILearn [S][MEAN] + IHLearn [S][MEAN] + IHard [S][MEAN] + SUse [S][MEAN] 

    + SatRobot [S][MEAN] + SatDevice [S][MEAN] + SatSelf [S][MEAN] + ASkill [S][MEAN] + AKnowledge 

    [S][MEAN] + AHelp [S][MEAN] + APressure [S][MEAN] + ANever [S][MEAN] + TFailSafeR [S][MEAN] + 

    TSkillF [S][MEAN] + TReliableR [S][MEAN] + TFunctionalityF [S][MEAN] + TWorksR [S][MEAN] + 

    TFeaturesF [S][MEAN] + TAbandonR [S][MEAN] + NRTLXMentalDemand [S][MEAN] + NRTLXPhysicalDemand 

    [S][MEAN] + NRTLXTimePressure [S][MEAN] + NRTLXPerformPressure [S][MEAN] + NRTLXEffort [S][MEAN] + 

    NRTLXFrustration [S][MEAN] + RobotHead [S][MEAN] + E1 [S][MEAN] + E2 [S][MEAN] + E3 [S][MEAN] + E4 

    [S][MEAN] + E5 [S][MEAN] BY CTask [C] 

  /CATEGORIES VARIABLES=CTask ORDER=A KEY=VALUE EMPTY=INCLUDE. 

 
Custom Tables 
 

 

Number of Construction Task 

Frame Group Roof 

Mean Mean Mean 

Age of Participant 29 29 29 

Track Solution Time in Seconds 94 86 91 

Number of Collisions 1 1 1 

Building Solution Time in 

Seconds 

33 44 118 

Perceived Control Complexity 4 4 4 

Perceived Building Complexity 5 4 4 

Used Control Device was 

needlessly complex 

5 4 4 

Used Control Device was easy 

comprehensible 

5 4 4 

Used Control Device was fast to 

learn 

5 4 4 

Used Control Device needs 

much to learn 

5 4 5 

Used Control Device was hard to 

use 

4 4 4 

Like to use device often 4 3 4 

Satisfied with rob ots' 

performance 

4 4 4 

Satisfied with devices' 

performance 

4 4 4 

Satisfied with own performance 4 4 4 



Own required skill for 

commanding robots with device 

5 4 4 

Own required knowledge for 

commanding robots with device 

4 4 4 

Would not be able to solve a task 

without help  

4 4 5 

Would not be able to solve a task 

under time pressure 

4 4 4 

Would never be able to solve a 

task 

5 5 5 

The System is very FailSafe 4 4 4 

The System has the ability to 

handle what I want 

4 4 4 

The System is very reliable 3 4 3 

The System has the required 

functionality 

4 4 4 

The System works for me 4 4 4 

The System provides the 

Features I need for solving 

Tasks 

4 4 4 

The System does not abandon 

me 

4 4 4 

Mental Demand 6 8 7 

Physical Demand 2 3 2 

Time Pressure 2 4 4 

Performance Pressure 8 9 9 

Effort needed 9 10 10 

Frustration 4 6 5 

Existence of a Head 1 1 1 

Unecht - Natürlich . . 2 

Wie eine Maschine - Wie ein 

Mensch 

. . 1 

Hat kein Bewusstsein - Hat ein 

Bewusstsein 

. . 1 

Künstlich - Realistisch . . 2 

Bewegt sich steif - Bewegt sich 

flüssig 

. . 2 

 
* Custom Tables grouped by Used Device 

 

CTABLES 

  /VLABELS VARIABLES=Age TSolTime NumOfColl CSolTime PerceivedTComplexity PerceivedBComplexity 

    IComplexity IComprehensible ILearn IHLearn IHard SUse SatRobot SatDevice SatSelf ASkill AKnowledge 

    AHelp APressure ANever TFailSafeR TSkillF TReliableR TFunctionalityF TWorksR TFeaturesF TAbandonR 

    NRTLXMentalDemand NRTLXPhysicalDemand NRTLXTimePressure NRTLXPerformPressure NRTLXEffort 

    NRTLXFrustration RobotHead E1 E2 E3 E4 E5 Device 

    DISPLAY=LABEL 

  /TABLE Age [S][MEAN] + TSolTime [S][MEAN] + NumOfColl [S][MEAN] + CSolTime [S][MEAN] + 

    PerceivedTComplexity [S][MEAN] + PerceivedBComplexity [S][MEAN] + IComplexity [S][MEAN] + 

    IComprehensible [S][MEAN] + ILearn [S][MEAN] + IHLearn [S][MEAN] + IHard [S][MEAN] + SUse [S][MEAN] 

    + SatRobot [S][MEAN] + SatDevice [S][MEAN] + SatSelf [S][MEAN] + ASkill [S][MEAN] + AKnowledge 

    [S][MEAN] + AHelp [S][MEAN] + APressure [S][MEAN] + ANever [S][MEAN] + TFailSafeR [S][MEAN] + 

    TSkillF [S][MEAN] + TReliableR [S][MEAN] + TFunctionalityF [S][MEAN] + TWorksR [S][MEAN] + 

    TFeaturesF [S][MEAN] + TAbandonR [S][MEAN] + NRTLXMentalDemand [S][MEAN] + NRTLXPhysicalDemand 

    [S][MEAN] + NRTLXTimePressure [S][MEAN] + NRTLXPerformPressure [S][MEAN] + NRTLXEffort [S][MEAN] + 

    NRTLXFrustration [S][MEAN] + RobotHead [S][MEAN] + E1 [S][MEAN] + E2 [S][MEAN] + E3 [S][MEAN] + E4 

    [S][MEAN] + E5 [S][MEAN] BY Device 

  /CATEGORIES VARIABLES=Device ORDER=A KEY=VALUE EMPTY=INCLUDE. 

 
Custom Tables 
 

 

Used Device 

PC Control Gesture-based Speech 

Mean Mean Mean 

Age of Participant 29 29 29 

Track Solution Time in Seconds 55 80 146 

Number of Collisions 0 0 2 



Building Solution Time in 

Seconds 

64 47 78 

Perceived Control Complexity 5 4 3 

Perceived Building Complexity 5 5 4 

Used Control Device was 

needlessly complex 

5 4 4 

Used Control Device was easy 

comprehensible 

5 5 4 

Used Control Device was fast to 

learn 

5 4 4 

Used Control Device needs 

much to learn 

5 5 4 

Used Control Device was hard to 

use 

5 4 3 

Like to use device often 4 4 3 

Satisfied with rob ots' 

performance 

4 4 3 

Satisfied with devices' 

performance 

5 4 2 

Satisfied with own performance 5 4 3 

Own required skill for 

commanding robots with device 

5 4 4 

Own required knowledge for 

commanding robots with device 

5 4 4 

Would not be able to solve a task 

without help  

5 5 4 

Would not be able to solve a task 

under time pressure 

5 4 3 

Would never be able to solve a 

task 

5 5 4 

The System is very FailSafe 5 4 3 

The System has the ability to 

handle what I want 

5 4 3 

The System is very reliable 4 4 2 

The System has the required 

functionality 

5 5 3 

The System works for me 5 5 3 

The System provides the 

Features I need for solving 

Tasks 

5 5 3 

The System does not abandon 

me 

5 4 2 

Mental Demand 5 6 9 

Physical Demand 2 3 3 

Time Pressure 2 3 5 

Performance Pressure 7 8 10 

Effort needed 8 9 12 

Frustration 2 4 9 

Existence of a Head 1 1 1 

Unecht - Natürlich 2 2 2 

Wie eine Maschine - Wie ein 

Mensch 

1 1 2 

Hat kein Bewusstsein - Hat ein 

Bewusstsein 

1 1 2 

Künstlich - Realistisch 2 2 2 

Bewegt sich steif - Bewegt sich 

flüssig 

2 2 2 

 

 
 

 



* Custom Tables grouped by Gender. 

CTABLES 

  /VLABELS VARIABLES=TSolTime CSolTime NumOfColl PerceivedTComplexity PerceivedBComplexity 

    IComplexity IComprehensible ILearn IHLearn IHard SUse SatRobot SatDevice SatSelf ASkill AKnowledge 

    AHelp APressure ANever TFailSafeR TSkillF TReliableR TFunctionalityF TWorksR TFeaturesF TAbandonR 

    NRTLXMentalDemand NRTLXPhysicalDemand NRTLXTimePressure NRTLXPerformPressure NRTLXEffort 

    NRTLXFrustration E1 E2 E3 E4 E5 Intuitiveness Satisfaction Acceptance Trust Reliability 

    Functionality CognitiveWorkload Embodiment Gender 

    DISPLAY=LABEL 

  /TABLE TSolTime [S][MEAN] + CSolTime [S][MEAN] + NumOfColl [S][MEAN] + PerceivedTComplexity 

    [S][MEAN] + PerceivedBComplexity [S][MEAN] + IComplexity [S][MEAN] + IComprehensible [S][MEAN] + 

    ILearn [S][MEAN] + IHLearn [S][MEAN] + IHard [S][MEAN] + SUse [S][MEAN] + SatRobot [S][MEAN] + 

    SatDevice [S][MEAN] + SatSelf [S][MEAN] + ASkill [S][MEAN] + AKnowledge [S][MEAN] + AHelp [S][MEAN] 

    + APressure [S][MEAN] + ANever [S][MEAN] + TFailSafeR [S][MEAN] + TSkillF [S][MEAN] + TReliableR 

    [S][MEAN] + TFunctionalityF [S][MEAN] + TWorksR [S][MEAN] + TFeaturesF [S][MEAN] + TAbandonR 

    [S][MEAN] + NRTLXMentalDemand [S][MEAN] + NRTLXPhysicalDemand [S][MEAN] + NRTLXTimePressure 

    [S][MEAN] + NRTLXPerformPressure [S][MEAN] + NRTLXEffort [S][MEAN] + NRTLXFrustration [S][MEAN] + 

    E1 [S][MEAN] + E2 [S][MEAN] + E3 [S][MEAN] + E4 [S][MEAN] + E5 [S][MEAN] BY Gender 

  /CATEGORIES VARIABLES=Gender ORDER=A KEY=VALUE EMPTY=INCLUDE. 

 
Custom Tables 
 

 

Gender 

Male Female 

Mean Mean 

Track Solution Time in Seconds 79 103 

Building Solution Time in 

Seconds 

51 79 

Number of Collisions 1 1 

Perceived Control Complexity 4 4 

Perceived Building Complexity 4 4 

Used Control Device was 

needlessly complex 

4 5 

Used Control Device was easy 

comprehensible 

4 5 

Used Control Device was fast to 

learn 

4 4 

Used Control Device needs 

much to learn 

5 5 

Used Control Device was hard to 

use 

4 4 

Like to use device often 3 4 

Satisfied with rob ots' 

performance 

4 4 

Satisfied with devices' 

performance 

4 4 

Satisfied with own performance 4 4 

Own required skill for 

commanding robots with device 

4 4 

Own required knowledge for 

commanding robots with device 

4 4 

Would not be able to solve a task 

without help  

5 4 

Would not be able to solve a task 

under time pressure 

4 4 

Would never be able to solve a 

task 

5 5 

The System is very FailSafe 4 4 

The System has the ability to 

handle what I want 

4 4 

The System is very reliable 3 4 

The System has the required 

functionality 

4 4 

The System works for me 4 4 

The System provides the 

Features I need for solving 

Tasks 

4 4 



The System does not abandon 

me 

4 4 

Mental Demand 5 9 

Physical Demand 2 3 

Time Pressure 3 4 

Performance Pressure 8 9 

Effort needed 8 12 

Frustration 5 5 

Unecht - Natürlich 2 3 

Wie eine Maschine - Wie ein 

Mensch 

1 2 

Hat kein Bewusstsein - Hat ein 

Bewusstsein 

1 1 

Künstlich - Realistisch 1 2 

Bewegt sich steif - Bewegt sich 

flüssig 

2 2 

 
*Cronbach's Alpha Intuitiveness 

 

RELIABILITY 

  /VARIABLES=IComplexity IComprehensible ILearn IHLearn IHard 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 
 

Case Processing Summary 

 N % 

Cases Valid 71 98,7 

Excludeda 1 1,3 

Total 72 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,792 5 

 

Item-Total Statistics 

 Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Used Control Device was 

needlessly complex 

17,15 10,539 ,531 ,766 

Used Control Device was easy 

comprehensible 

17,24 9,830 ,455 ,794 

Used Control Device was fast to 

learn 

17,53 8,444 ,716 ,700 

Used Control Device needs 

much to learn 

17,03 10,794 ,643 ,748 

Used Control Device was hard to 

use 

17,59 8,683 ,598 ,747 

 
*Cronbach's Alpha Satisfaction 

 

RELIABILITY 

  /VARIABLES=SUse SatRobot SatDevice SatSelf 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

 /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 



 

Case Processing Summary 

 N % 

Cases Valid 67 93,3 

Excludeda 5 6,7 

Total 72 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,912 4 

 

Item-Total Statistics 

 Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Like to use device often 11,39 10,907 ,824 ,879 

Satisfied with rob ots' 

performance 

11,14 11,892 ,820 ,879 

Satisfied with devices' 

performance 

11,29 10,555 ,874 ,859 

Satisfied with own performance 11,01 13,898 ,713 ,918 
 

*Cronbach's Alpha Acceptance 

 

RELIABILITY 

  /VARIABLES=ASkill AKnowledge AHelp APressure ANever 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 
 

Case Processing Summary 

 N % 

Cases Valid 72 100,0 

Excludeda 0 ,0 

Total 72 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,639 5 

 

Item-Total Statistics 

 Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Own required skill for 

commanding robots with device 

17,64 6,963 ,324 ,623 

Own required knowledge for 

commanding robots with device 

17,75 6,705 ,314 ,636 

Would not be able to solve a task 

without help  

17,52 7,442 ,354 ,604 

Would not be able to solve a task 

under time pressure 

17,85 5,748 ,602 ,468 

Would never be able to solve a 

task 

17,29 7,886 ,454 ,582 

 

 

 

 

 

 

 

 

 



*Cronbach's Alpha Trust Complete 

 

RELIABILITY 

  /VARIABLES=TFailSafeR TSkillF TReliableR TFunctionalityF TWorksR TFeaturesF TAbandonR 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 

 

Case Processing Summary 

 N % 

Cases Valid 72 100,0 

Excludeda 0 ,0 

Total 72 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,955 7 

 

Item-Total Statistics 

 Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

The System is very FailSafe 23,75 35,543 ,800 ,951 

The System has the ability to 

handle what I want 

23,43 36,410 ,839 ,948 

The System is very reliable 24,03 33,810 ,879 ,945 

The System has the required 

functionality 

23,23 37,664 ,769 ,954 

The System works for me 23,35 34,716 ,900 ,943 

The System provides the 

Features I need for solving 

Tasks 

23,20 36,757 ,834 ,949 

The System does not abandon 

me 

23,83 33,443 ,905 ,943 

 

*Cronbach's Alpha Reliability (Sub from Trust) 

 

RELIABILITY 

  /VARIABLES=TFailSafeR TReliableR TWorksR TAbandonR 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 
 

Case Processing Summary 

 N % 

Cases Valid 72 100,0 

Excludeda 0 ,0 

Total 72 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,948 4 

 

 

 

 

 

 



Item-Total Statistics 

 Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

The System is very FailSafe 11,20 11,595 ,844 ,941 

The System is very reliable 11,48 10,631 ,925 ,916 

The System works for me 10,80 11,946 ,818 ,949 

The System does not abandon 

me 

11,28 10,664 ,915 ,919 

 

*Cronbach's Alpha Functionality (Sub from Trust) 

 

RELIABILITY 

  /VARIABLES=TSkillF TFunctionalityF TFeaturesF 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 
 

Case Processing Summary 

 N % 

Cases Valid 72 100,0 

Excludeda 0 ,0 

Total 72 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,904 3 

 

Item-Total Statistics 

 Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

The System has the ability to 

handle what I want 

8,51 3,470 ,811 ,860 

The System has the required 

functionality 

8,31 3,567 ,840 ,837 

The System provides the 

Features I need for solving 

Tasks 

8,28 3,664 ,776 ,889 

 

*Cronbach's Alpha NASA RTLX 

 

RELIABILITY 

  /VARIABLES=NRTLXMentalDemand NRTLXPhysicalDemand NRTLXTimePressure NRTLXPerformPressure 

    NRTLXEffort NRTLXFrustration 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 

 

Case Processing Summary 

 N % 

Cases Valid 72 100,0 

Excludeda 0 ,0 

Total 72 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,733 6 

 



Item-Total Statistics 

 Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Mental Demand 28,57 219,788 ,612 ,654 

Physical Demand 33,01 295,635 ,365 ,735 

Time Pressure 32,08 267,507 ,495 ,703 

Performance Pressure 27,04 209,039 ,443 ,717 

Effort needed 25,96 188,390 ,590 ,659 

Frustration 30,67 230,631 ,488 ,690 
 

*Cronbach's Alpha Embodiment 

 

RELIABILITY 

  /VARIABLES=E1 E2 E3 E4 E5 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 
Reliability 
 
Scale: ALL VARIABLES 

 

Case Processing Summary 

 N % 

Cases Valid 24 33,3 

Excludeda 48 66,7 

Total 72 100,0 

 

Reliability Statistics 

Cronbach's Alpha N of Items 

,745 5 

 

Item-Total Statistics 

 Scale Mean if Item 

Deleted 

Scale Variance if 

Item Deleted 

Corrected 

Item-Total 

Correlation 

Cronbach's Alpha 

if Item Deleted 

Unecht - Natürlich 6,40 5,333 ,601 ,666 

Wie eine Maschine - Wie ein 

Mensch 

7,20 6,917 ,638 ,674 

Hat kein Bewusstsein - Hat ein 

Bewusstsein 

7,32 8,893 ,063 ,815 

Künstlich - Realistisch 6,88 5,193 ,701 ,616 

Bewegt sich steif - Bewegt sich 

flüssig 

6,60 6,000 ,596 ,666 

 
*Compute Variable Intuitiveness 

 

COMPUTE Intuitiveness=MEAN(IComplexity,IComprehensible,ILearn,IHLearn,IHard). 

EXECUTE. 

 

*Compute Variable Satisfaction 

 

COMPUTE Satisfaction=MEAN(SUse,SatRobot,SatDevice,SatSelf). 

EXECUTE. 

 

*Compute Variable Acceptance 

 

COMPUTE Acceptance=MEAN(ASkill,AKnowledge,AHelp,APressure,ANever). 

EXECUTE. 

 

*Compute Variable Trust 

 

COMPUTE Trust=MEAN(TFailSafeR,TSkillF,TReliableR,TFunctionalityF,TWorksR,TFeaturesF,TAbandonR). 

EXECUTE. 

 

*Compute Variable Reliability (Sub from Trust) 

 

COMPUTE Reliability=MEAN(TFailSafeR,TReliableR,TWorksR,TAbandonR). 

EXECUTE. 

 

 

 

 



*Compute Variable Functionality (Sub from Trust) 

 

COMPUTE Functionality=MEAN(TSkillF,TFunctionalityF,TFeaturesF). 

EXECUTE. 

 

*Compute Variable Cognitive Workload 

 

COMPUTE CognitiveWorkload=MEAN(NRTLXMentalDemand,NRTLXPhysicalDemand,NRTLXTimePressure, 

    NRTLXPerformPressure,NRTLXEffort,NRTLXFrustration). 

EXECUTE. 

 

*Compute Variable Embodiment 

 

COMPUTE Embodiment=MEAN(E1,E2,E3,E4,E5). 

EXECUTE. 

 

* Custom Tables of the scales grouped by construction task. 

CTABLES 

  /VLABELS VARIABLES=Intuitiveness Satisfaction Acceptance Trust Reliability Functionality 

    CognitiveWorkload Embodiment CTask 

    DISPLAY=LABEL 

  /TABLE Intuitiveness [MEAN] + Satisfaction [MEAN] + Acceptance [MEAN] + Trust [MEAN] + 

    Reliability [MEAN] + Functionality [MEAN] + CognitiveWorkload [MEAN] + Embodiment [MEAN] BY CTask 

  /CATEGORIES VARIABLES=CTask ORDER=A KEY=VALUE EMPTY=INCLUDE. 

 
Custom Tables 
 

 

Number of Construction Task 

Frame Group Roof 

Mean Mean Mean 

Intuitiveness 4,61 4,18 4,18 

Satisfaction 3,69 3,65 3,79 

Acceptance 4,54 4,26 4,42 

Trust 3,90 3,90 3,98 

Reliability 3,62 3,81 3,76 

Functionality 4,27 4,01 4,27 

CognitiveWorkload 5,26 6,38 6,09 

Embodiment . . 1,72 
 

* Custom Tables of the scales grouped by used input device. 

CTABLES 

  /VLABELS VARIABLES=Intuitiveness Satisfaction Acceptance Trust Reliability Functionality 

    CognitiveWorkload Embodiment Device 

    DISPLAY=LABEL 

  /TABLE Intuitiveness [S][MEAN] + Satisfaction [S][MEAN] + Acceptance [S][MEAN] + Trust [S][MEAN] 

    + Reliability [S][MEAN] + Functionality [S][MEAN] + CognitiveWorkload [S][MEAN] + Embodiment 

    [S][MEAN] BY Device 

  /CATEGORIES VARIABLES=Device ORDER=A KEY=VALUE EMPTY=INCLUDE. 

 
Custom Tables 
 

 

Used Device 

PC Control Gesture-based Speech 

Mean Mean Mean 

Intuitiveness 4,78 4,42 3,78 

Satisfaction 4,44 3,98 2,70 

Acceptance 4,70 4,50 4,01 

Trust 4,63 4,31 2,83 

Reliability 4,58 4,13 2,48 

Functionality 4,69 4,55 3,31 

CognitiveWorkload 4,34 5,53 7,87 

Embodiment 1,78 1,69 1,70 

 
* Custom Tables of the scales grouped by existence of head. 

CTABLES 

  /VLABELS VARIABLES=Intuitiveness Satisfaction Acceptance Trust Reliability Functionality 

    CognitiveWorkload Embodiment RobotHead 

    DISPLAY=LABEL 

  /TABLE Intuitiveness [S][MEAN] + Satisfaction [S][MEAN] + Acceptance [S][MEAN] + Trust [S][MEAN] 

    + Reliability [S][MEAN] + Functionality [S][MEAN] + CognitiveWorkload [S][MEAN] + Embodiment 

    [S][MEAN] BY RobotHead 

  /CATEGORIES VARIABLES=RobotHead ORDER=A KEY=VALUE EMPTY=INCLUDE. 

 
 
 
 
 



Custom Tables 
 

 

Existence of a Head 

No Yes 

Mean Mean 

Intuitiveness 4,33 4,32 

Satisfaction 3,59 3,81 

Acceptance 4,39 4,41 

Trust 3,71 4,12 

Reliability 3,53 3,92 

Functionality 3,94 4,40 

CognitiveWorkload 5,62 6,18 

Embodiment 1,75 1,69 
 

* Custom Tables of the scales grouped by gender. 

CTABLES 

  /VLABELS VARIABLES=Intuitiveness Satisfaction Acceptance Trust Reliability Functionality 

    CognitiveWorkload Embodiment RobotHead 

    DISPLAY=LABEL 

  /TABLE Intuitiveness [S][MEAN] + Satisfaction [S][MEAN] + Acceptance [S][MEAN] + Trust [S][MEAN] 

    + Reliability [S][MEAN] + Functionality [S][MEAN] + CognitiveWorkload [S][MEAN] + Embodiment 

    [S][MEAN] BY gender 

  /CATEGORIES VARIABLES=RobotHead ORDER=A KEY=VALUE EMPTY=INCLUDE. 

 
Custom Tables 
 

 

Gender 

Male Female 

Mean Mean 

Intuitiveness 4,20 4,48 

Satisfaction 3,59 3,86 

Acceptance 4,51 4,26 

Trust 3,94 3,90 

Reliability 3,68 3,79 

Functionality 4,29 4,05 

CognitiveWorkload 5,08 6,97 

Embodiment 1,46 2,05 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



*Nonparametric Tests: Independent Samples grouped by Device. 

NPTESTS 

  /INDEPENDENT TEST (TSolTime CSolTime NumOfColl Distraction PerceivedTComplexity 

    PerceivedBComplexity IComplexity IComprehensible ILearn IHLearn IHard SUse SatRobot SatDevice 

    SatSelf ASkill AKnowledge AHelp APressure ANever TFailSafeR TSkillF TReliableR TFunctionalityF 

    TWorksR TFeaturesF TAbandonR NRTLXMentalDemand NRTLXPhysicalDemand NRTLXTimePressure 

    NRTLXPerformPressure NRTLXEffort NRTLXFrustration E1 E2 E3 E4 E5 Intuitiveness Satisfaction 

    Acceptance Trust Reliability Functionality CognitiveWorkload Embodiment) GROUP (Device) 

  /MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE 

  /CRITERIA ALPHA=0.05  CILEVEL=95. 

 
Nonparametric Tests 
 

[DataSet1] C:\Users\Stollnberger\Desktop\FinaleStudie\Auswertung\DatenAuswertung.sav 

 
 



 
 

 
 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



*Nonparametric Tests: Independent Samples grouped by existence of Head 

 

NPTESTS 

  /INDEPENDENT TEST (TSolTime CSolTime NumOfColl Distraction PerceivedTComplexity 

    PerceivedBComplexity IComplexity IComprehensible ILearn IHLearn IHard SUse SatRobot SatDevice 

    SatSelf ASkill AKnowledge AHelp APressure ANever TFailSafeR TSkillF TReliableR TFunctionalityF 

    TWorksR TFeaturesF TAbandonR NRTLXMentalDemand NRTLXPhysicalDemand NRTLXTimePressure 

    NRTLXPerformPressure NRTLXEffort NRTLXFrustration E1 E2 E3 E4 E5 Intuitiveness Satisfaction 

    Acceptance Trust Reliability Functionality CognitiveWorkload Embodiment) GROUP (RobotHead) 

    MANN_WHITNEY 

  /MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE 

  /CRITERIA ALPHA=0.05  CILEVEL=95. 

 
Nonparametric Tests 

 
 



 
 

 
 



 
 

 
 



 
*Nonparametric Tests: Independent Samples grouped by Number of Construction Task 

 

NPTESTS 

  /INDEPENDENT TEST (TSolTime CSolTime NumOfColl Distraction PerceivedTComplexity 

    PerceivedBComplexity IComplexity IComprehensible ILearn IHLearn IHard SUse SatRobot SatDevice 

    SatSelf ASkill AKnowledge AHelp APressure ANever TFailSafeR TSkillF TReliableR TFunctionalityF 

    TWorksR TFeaturesF TAbandonR NRTLXMentalDemand NRTLXPhysicalDemand NRTLXTimePressure 

    NRTLXPerformPressure NRTLXEffort NRTLXFrustration E1 E2 E3 E4 E5 Intuitiveness Satisfaction 

    Acceptance Trust Reliability Functionality CognitiveWorkload Embodiment) GROUP (CTask) 

  /MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE 

  /CRITERIA ALPHA=0.05  CILEVEL=95. 

 
Nonparametric Tests 
 

 
 



 
 

 
 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



*Nonparametric Tests: Independent Samples grouped by Gender 

 

NPTESTS 

  /INDEPENDENT TEST (TSolTime CSolTime NumOfColl Distraction PerceivedTComplexity 

    PerceivedBComplexity IComplexity IComprehensible ILearn IHLearn IHard SUse SatRobot SatDevice 

    SatSelf ASkill AKnowledge AHelp APressure ANever TFailSafeR TSkillF TReliableR TFunctionalityF 

    TWorksR TFeaturesF TAbandonR NRTLXMentalDemand NRTLXPhysicalDemand NRTLXTimePressure 

    NRTLXPerformPressure NRTLXEffort NRTLXFrustration E1 E2 E3 E4 E5 Intuitiveness Satisfaction 

    Acceptance Trust Reliability Functionality CognitiveWorkload Embodiment) GROUP (Gender) 

  /MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE 

  /CRITERIA ALPHA=0.05  CILEVEL=95. 

 
Nonparametric Tests 
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